Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, P. R. China.
Department of Physics, Freie Universität Berlin, 14195, Berlin, Germany.
Adv Sci (Weinh). 2023 Jun;10(18):e2300512. doi: 10.1002/advs.202300512. Epub 2023 Apr 21.
An important vision of modern magnetic research is to use antiferromagnets (AFMs) as controllable and active ultrafast components in spintronic devices. Hematite (α-Fe O ) is a promising model material in this respect because its pronounced Dzyaloshinskii-Moriya interaction leads to the coexistence of antiferromagnetism and weak ferromagnetism. Here, femtosecond laser pulses are used to drive terahertz (THz) spin currents from α-Fe O into an adjacent Pt layer. Two contributions to the generation of the spin current with distinctly different dynamics are found: the impulsive stimulated Raman scatting that relies on the AFM order and the ultrafast spin Seebeck effect that relies on the net magnetization. The total THz spin current dynamics can be manipulated by a medium-strength magnetic field below 1 T. The control of the THz spin current achieved in α-Fe O opens the pathway toward tailoring the exact spin current dynamics from ultrafast AFM spin sources.
现代磁学的一个重要愿景是将反铁磁体 (AFMs) 用作自旋电子器件中可控且活跃的超快速组件。赤铁矿 (α-Fe 2 O 3 ) 在这方面是一种很有前途的模型材料,因为其显著的 Dzyaloshinskii-Moriya 相互作用导致反铁磁性和弱铁磁性共存。在这里,飞秒激光脉冲被用来驱动来自 α-Fe 2 O 3 的太赫兹 (THz) 自旋电流进入相邻的 Pt 层。发现产生自旋电流的两种贡献具有明显不同的动力学:依赖于 AFM 序的脉冲受激拉曼散射和依赖于净磁化的超快自旋塞贝克效应。总 THz 自旋电流动力学可以通过低于 1 T 的中等强度磁场进行控制。在 α-Fe 2 O 中实现的 THz 自旋电流控制为从超快 AFM 自旋源定制精确的自旋电流动力学开辟了途径。