From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China
From the State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian 361005, China.
J Biol Chem. 2018 Aug 10;293(32):12535-12541. doi: 10.1074/jbc.RA118.004188. Epub 2018 Jun 22.
Farnesoid X receptor (FXR) is a member of the family of ligand-activated nuclear receptors. FXR plays critical roles in maintaining many metabolic pathways, including bile acid regulation and glucose and lipid homeostasis, and forms a heterodimeric complex with the retinoid X receptor (RXR). Despite the important roles of the FXR/RXR heterodimerization in human physiology, the molecular basis underlying the FXR/RXR interaction is still uncertain in the absence of a complex structure. Here, we report the heterodimeric structure of FXR and RXR in the presence of an FXR agonist (WAY-362450), RXR agonist (9--retinoic acid), and a peptide derived from a steroid receptor coactivator (SRC2), revealing both unique and conserved modes for FXR heterodimerization. We found that the dimerization with RXR induced allosteric conformational changes on the coactivator-binding site of FXR. These changes enhanced the transcriptional activity of FXR by promoting the coactivator binding, thus suggesting a structural basis for the functional permissiveness of the FXR/RXR heterodimer complex. Furthermore, sequence analyses together with functional mutagenesis studies indicated that the helix H10 largely responsible for the dimerization is highly conserved and also critical for the FXR transcriptional activity. Our findings highlight the important roles of RXR heterodimerization in the nuclear receptor signaling, providing a potential framework to develop pharmaceutical agents in treating FXR/RXR-related diseases.
法尼醇 X 受体 (FXR) 是配体激活核受体家族的成员。FXR 在维持许多代谢途径中发挥着关键作用,包括胆汁酸调节、葡萄糖和脂质稳态,并与视黄醇 X 受体 (RXR) 形成异二聚体复合物。尽管 FXR/RXR 异二聚化在人体生理学中具有重要作用,但在没有复合物结构的情况下,FXR/RXR 相互作用的分子基础仍不清楚。在这里,我们报告了 FXR 和 RXR 在 FXR 激动剂 (WAY-362450)、RXR 激动剂 (9--视黄酸) 和来自类固醇受体共激活剂 (SRC2) 的肽存在下的异二聚体结构,揭示了 FXR 异二聚化的独特和保守模式。我们发现,与 RXR 的二聚化诱导了 FXR 上共激活剂结合位点的变构构象变化。这些变化通过促进共激活剂结合增强了 FXR 的转录活性,从而为 FXR/RXR 异二聚体复合物的功能许可提供了结构基础。此外,序列分析和功能诱变研究表明,主要负责二聚化的螺旋 H10 高度保守,对于 FXR 的转录活性也至关重要。我们的发现强调了 RXR 异二聚化在核受体信号转导中的重要作用,为开发治疗 FXR/RXR 相关疾病的药物提供了潜在框架。