Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
Synthetic Biology Center, MIT, Cambridge, MA, 02139, USA.
Nat Commun. 2018 Jun 22;9(1):2430. doi: 10.1038/s41467-018-04575-0.
MicroRNAs (miRNAs) regulate a majority of protein-coding genes, affecting nearly all biological pathways. However, the quantitative dimensions of miRNA-based regulation are not fully understood. In particular, the implications of miRNA target site location, composition rules for multiple target sites, and cooperativity limits for genes regulated by many miRNAs have not been quantitatively characterized. We explore these aspects of miRNA biology at a quantitative single-cell level using a library of 620 miRNA sensors and reporters that are regulated by many miRNA target sites at different positions. Interestingly, we find that miRNA target site sets within the same untranslated region exhibit combined miRNA activity described by an antagonistic relationship while those in separate untranslated regions show synergy. The resulting antagonistic/synergistic computational model enables the high-fidelity prediction of miRNA sensor activity for sensors containing many miRNA targets. These findings may help to accelerate the development of sophisticated sensors for clinical and research applications.
MicroRNAs (miRNAs) 调控着大多数蛋白质编码基因,影响着几乎所有的生物途径。然而,基于 miRNA 的调控的定量维度还没有被完全理解。特别是,miRNA 靶位点位置、多个靶位点的组成规则,以及受许多 miRNA 调控的基因的合作限制,这些方面都没有被定量地描述。我们使用一个由 620 个 miRNA 传感器和报告器组成的文库,在单细胞定量水平上探索了 miRNA 生物学的这些方面,这些传感器和报告器由许多位于不同位置的 miRNA 靶位点调控。有趣的是,我们发现,同一个非翻译区中的 miRNA 靶位点集表现出协同作用,由拮抗关系来描述,而那些位于不同非翻译区中的靶位点集则表现出协同作用。由此产生的拮抗/协同计算模型能够高精度地预测含有多个 miRNA 靶位点的传感器的 miRNA 传感器活性。这些发现可能有助于加速开发用于临床和研究应用的复杂传感器。