Zetter Rasmus, Iivanainen Joonas, Stenroos Matti, Parkkonen Lauri
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076, Aalto, Finland.
Aalto NeuroImaging, Aalto University, 00076, Aalto, Finland.
Brain Topogr. 2018 Nov;31(6):931-948. doi: 10.1007/s10548-018-0656-5. Epub 2018 Jun 22.
Recent advances in magnetic sensing has made on-scalp magnetoencephalography (MEG) possible. In particular, optically-pumped magnetometers (OPMs) have reached sensitivity levels that enable their use in MEG. In contrast to the SQUID sensors used in current MEG systems, OPMs do not require cryogenic cooling and can thus be placed within millimetres from the head, enabling the construction of sensor arrays that conform to the shape of an individual's head. To properly estimate the location of neural sources within the brain, one must accurately know the position and orientation of sensors in relation to the head. With the adaptable on-scalp MEG sensor arrays, this coregistration becomes more challenging than in current SQUID-based MEG systems that use rigid sensor arrays. Here, we used simulations to quantify how accurately one needs to know the position and orientation of sensors in an on-scalp MEG system. The effects that different types of localisation errors have on forward modelling and source estimates obtained by minimum-norm estimation, dipole fitting, and beamforming are detailed. We found that sensor position errors generally have a larger effect than orientation errors and that these errors affect the localisation accuracy of superficial sources the most. To obtain similar or higher accuracy than with current SQUID-based MEG systems, RMS sensor position and orientation errors should be [Formula: see text] and [Formula: see text], respectively.
磁传感技术的最新进展使头皮脑磁图(MEG)成为可能。特别是,光泵磁力仪(OPM)已达到能够用于MEG的灵敏度水平。与当前MEG系统中使用的超导量子干涉仪(SQUID)传感器不同,OPM不需要低温冷却,因此可以放置在距离头部几毫米的位置,从而能够构建符合个体头部形状的传感器阵列。为了准确估计脑内神经源的位置,必须准确知道传感器相对于头部的位置和方向。对于可适应的头皮MEG传感器阵列,这种配准比使用刚性传感器阵列的当前基于SQUID的MEG系统更具挑战性。在这里,我们使用模拟来量化在头皮MEG系统中需要多准确地知道传感器的位置和方向。详细介绍了不同类型的定位误差对通过最小范数估计、偶极子拟合和波束形成获得的正向建模和源估计的影响。我们发现,传感器位置误差通常比方向误差影响更大,并且这些误差对浅表源的定位精度影响最大。为了获得与当前基于SQUID的MEG系统相似或更高的精度,传感器位置和方向的均方根误差分别应为[公式:见正文]和[公式:见正文]。