Suppr超能文献

在更靠近大脑的位置测量脑磁图:头皮上传感器阵列的性能。

Measuring MEG closer to the brain: Performance of on-scalp sensor arrays.

作者信息

Iivanainen Joonas, Stenroos Matti, Parkkonen Lauri

机构信息

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-00076 Aalto, Finland.

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, FI-00076 Aalto, Finland.

出版信息

Neuroimage. 2017 Feb 15;147:542-553. doi: 10.1016/j.neuroimage.2016.12.048. Epub 2016 Dec 19.

Abstract

Optically-pumped magnetometers (OPMs) have recently reached sensitivity levels required for magnetoencephalography (MEG). OPMs do not need cryogenics and can thus be placed within millimetres from the scalp into an array that adapts to the individual head size and shape, thereby reducing the distance from cortical sources to the sensors. Here, we quantified the improvement in recording MEG with hypothetical on-scalp OPM arrays compared to a 306-channel state-of-the-art SQUID array (102 magnetometers and 204 planar gradiometers). We simulated OPM arrays that measured either normal (nOPM; 102 sensors), tangential (tOPM; 204 sensors), or all components (aOPM; 306 sensors) of the magnetic field. We built forward models based on magnetic resonance images of 10 adult heads; we employed a three-compartment boundary element model and distributed current dipoles evenly across the cortical mantle. Compared to the SQUID magnetometers, nOPM and tOPM yielded 7.5 and 5.3 times higher signal power, while the correlations between the field patterns of source dipoles were reduced by factors of 2.8 and 3.6, respectively. Values of the field-pattern correlations were similar across nOPM, tOPM and SQUID gradiometers. Volume currents reduced the signals of primary currents on average by 10%, 72% and 15% in nOPM, tOPM and SQUID magnetometers, respectively. The information capacities of the OPM arrays were clearly higher than that of the SQUID array. The dipole-localization accuracies of the arrays were similar while the minimum-norm-based point-spread functions were on average 2.4 and 2.5 times more spread for the SQUID array compared to nOPM and tOPM arrays, respectively.

摘要

光泵磁力仪(OPM)最近已达到脑磁图(MEG)所需的灵敏度水平。OPM不需要低温环境,因此可以放置在距离头皮几毫米的位置,形成一个能适应个体头部大小和形状的阵列,从而缩短从皮质源到传感器的距离。在此,我们量化了与306通道的先进超导量子干涉装置(SQUID)阵列(102个磁力仪和204个平面梯度仪)相比,使用假设的头皮上OPM阵列记录MEG时的改善情况。我们模拟了测量磁场法向分量(nOPM;102个传感器)、切向分量(tOPM;204个传感器)或所有分量(aOPM;306个传感器)的OPM阵列。我们基于10名成年人头部的磁共振图像建立了正向模型;我们采用了三室边界元模型,并将电流偶极子均匀分布在皮质层上。与SQUID磁力仪相比,nOPM和tOPM产生的信号功率分别高出7.5倍和5.3倍,而源偶极子场模式之间的相关性分别降低了2.8倍和3.6倍。nOPM、tOPM和SQUID梯度仪的场模式相关值相似。体电流分别使nOPM、tOPM和SQUID磁力仪中一次电流的信号平均降低了10%、72%和15%。OPM阵列的信息容量明显高于SQUID阵列。各阵列的偶极子定位精度相似,而基于最小范数的点扩散函数在SQUID阵列中平均比nOPM和tOPM阵列分别宽2.4倍和2.5倍。

相似文献

1
Measuring MEG closer to the brain: Performance of on-scalp sensor arrays.
Neuroimage. 2017 Feb 15;147:542-553. doi: 10.1016/j.neuroimage.2016.12.048. Epub 2016 Dec 19.
2
Transforming and comparing data between standard SQUID and OPM-MEG systems.
PLoS One. 2022 Jan 19;17(1):e0262669. doi: 10.1371/journal.pone.0262669. eCollection 2022.
3
On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers.
Neuroimage. 2019 Jul 1;194:244-258. doi: 10.1016/j.neuroimage.2019.03.022. Epub 2019 Mar 15.
4
Requirements for Coregistration Accuracy in On-Scalp MEG.
Brain Topogr. 2018 Nov;31(6):931-948. doi: 10.1007/s10548-018-0656-5. Epub 2018 Jun 22.
5
Localizing on-scalp MEG sensors using an array of magnetic dipole coils.
PLoS One. 2018 May 10;13(5):e0191111. doi: 10.1371/journal.pone.0191111. eCollection 2018.
6
A 20-channel magnetoencephalography system based on optically pumped magnetometers.
Phys Med Biol. 2017 Nov 10;62(23):8909-8923. doi: 10.1088/1361-6560/aa93d1.
7
Simulation Study of Different OPM-MEG Measurement Components.
Sensors (Basel). 2022 Apr 21;22(9):3184. doi: 10.3390/s22093184.
8
Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system.
Neuroimage. 2021 Aug 1;236:118025. doi: 10.1016/j.neuroimage.2021.118025. Epub 2021 Apr 7.
9
Exploring the limits of MEG spatial resolution with multipolar expansions.
Neuroimage. 2023 Apr 15;270:119953. doi: 10.1016/j.neuroimage.2023.119953. Epub 2023 Feb 25.
10
Optimal design of on-scalp electromagnetic sensor arrays for brain source localisation.
Hum Brain Mapp. 2021 Oct 15;42(15):4869-4879. doi: 10.1002/hbm.25586. Epub 2021 Jul 10.

引用本文的文献

1
OPM-MEG reveals dynamics of beta bursts underlying attentional processes in sensory cortex.
Sci Rep. 2025 Aug 19;15(1):30471. doi: 10.1038/s41598-025-08037-8.
2
Superconducting Quantum Magnetometers for Brain Investigations.
Sensors (Basel). 2025 Jul 25;25(15):4625. doi: 10.3390/s25154625.
3
Optimal configuration of on-scalp OPMs with fixed channel counts.
Imaging Neurosci (Camb). 2025 May 30;3. doi: 10.1162/IMAG.a.22. eCollection 2025.
4
Demonstrating equivalence across magnetoencephalography scanner platforms using neural fingerprinting.
Imaging Neurosci (Camb). 2025 May 21;3. doi: 10.1162/IMAG.a.10. eCollection 2025.
5
Source reconstruction without an MRI using optically pumped magnetometer-based magnetoencephalography.
Imaging Neurosci (Camb). 2025 May 22;3. doi: 10.1162/IMAG.a.8. eCollection 2025.
6
Determining sensor geometry and gain in a wearable MEG system.
Imaging Neurosci (Camb). 2025 Apr 8;3. doi: 10.1162/imag_a_00535. eCollection 2025.
7
Inferring laminar origins of MEG signals with optically pumped magnetometers (OPMs): A simulation study.
Imaging Neurosci (Camb). 2025 Jan 2;3. doi: 10.1162/imag_a_00410. eCollection 2025.
8
9
Simultaneous whole-head electrophysiological recordings using EEG and OPM-MEG.
Imaging Neurosci (Camb). 2024 May 20;2. doi: 10.1162/imag_a_00179. eCollection 2024.
10
Test-retest reliability of the human connectome: An OPM-MEG study.
Imaging Neurosci (Camb). 2023 Oct 9;1. doi: 10.1162/imag_a_00020. eCollection 2023.

本文引用的文献

1
On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study.
PLoS One. 2016 Aug 26;11(8):e0157655. doi: 10.1371/journal.pone.0157655. eCollection 2016.
2
Incorporating and Compensating Cerebrospinal Fluid in Surface-Based Forward Models of Magneto- and Electroencephalography.
PLoS One. 2016 Jul 29;11(7):e0159595. doi: 10.1371/journal.pone.0159595. eCollection 2016.
3
Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers.
Phys Med Biol. 2015 Jun 21;60(12):4797-811. doi: 10.1088/0031-9155/60/12/4797. Epub 2015 Jun 4.
4
A guideline for head volume conductor modeling in EEG and MEG.
Neuroimage. 2014 Oct 15;100:590-607. doi: 10.1016/j.neuroimage.2014.06.040. Epub 2014 Jun 25.
5
Comparison of three-shell and simplified volume conductor models in magnetoencephalography.
Neuroimage. 2014 Jul 1;94:337-348. doi: 10.1016/j.neuroimage.2014.01.006. Epub 2014 Jan 14.
6
A compact, high performance atomic magnetometer for biomedical applications.
Phys Med Biol. 2013 Nov 21;58(22):8153-61. doi: 10.1088/0031-9155/58/22/8153.
7
Information content with low- vs. high-T(c) SQUID arrays in MEG recordings: the case for high-T(c) SQUID-based MEG.
J Neurosci Methods. 2014 Jan 30;222:42-6. doi: 10.1016/j.jneumeth.2013.10.007. Epub 2013 Nov 1.
8
MNE software for processing MEG and EEG data.
Neuroimage. 2014 Feb 1;86:446-60. doi: 10.1016/j.neuroimage.2013.10.027. Epub 2013 Oct 24.
10
Minimum-norm cortical source estimation in layered head models is robust against skull conductivity error.
Neuroimage. 2013 Nov 1;81:265-272. doi: 10.1016/j.neuroimage.2013.04.086. Epub 2013 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验