Tahmasebi Birgani Mohammad J, Mahdavi Maziyar, Zabihzadeh Mansour, Lotfi Mehrzad, Mosleh-Shirazi Mohammad A
Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Golestan Blvd, Ahvaz, 6135715794, Iran.
Department of Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Australas Phys Eng Sci Med. 2018 Sep;41(3):601-619. doi: 10.1007/s13246-018-0653-8. Epub 2018 Jun 22.
Relative electron densities of body tissues (ρ) for radiotherapy treatment planning are normally obtained by CT scanning of tissue substitute materials (TSMs) and producing a Hounsfield Unit-ρ calibration curve. Aiming for more accurate, simultaneous characterization of ρ and effective atomic number (Z) of real tissues, an in-house phantom (including 10 water solutions plus composite cork as TSMs) was constructed and scanned at 4 kVps. Dual-energy algorithms were applied to 80-140 and 100-140 kVp combination scans, for better differentiation of tissues with same attenuation coefficient at 120 kVp but different ρ and Z. Stoichiometric calibration and closeness of the ρ of the 11 TSMs to real tissues (≤ 0.5%) resulted in smaller ρ calculation discrepancies, compared to studies with commercial phantoms (p < 0.024). Applying an energy subtraction algorithm further mitigated errors by spectral separation and reduction of beam hardening artifacts and noise, reducing the mean and standard deviation of the absolute difference of ρ at 80-140 kVp (p < 0.003) and 100-140 kVp (p < 0.0001) scans, compared to 120 kVp scan, respectively. Moreover, a parametrization algorithm decreased the Z discrepancy from real tissues at 80-140 kVp scans; for thyroid, the residual error was ≤ 0.18 units of Z (vs. 0.2 with the Gammex 467 phantom from a previous study). These results further suggest that a dual-energy algorithm in combination with stoichiometry can decrease errors in calculation of the ρ of real tissues to ameliorate inhomogeneity for dose calculation in radiotherapy treatment planning, especially when the energy spectrum of the X-ray tube of the CT machine is not available.
放射治疗计划中人体组织的相对电子密度(ρ)通常通过对组织替代材料(TSM)进行CT扫描并生成亨氏单位-ρ校准曲线来获得。为了更准确、同时地表征真实组织的ρ和有效原子序数(Z),构建了一个内部体模(包括10种水溶液以及作为TSM的复合软木塞)并在4 kVps下进行扫描。将双能算法应用于80 - 140 kVp和100 - 140 kVp的组合扫描,以更好地区分在120 kVp时具有相同衰减系数但ρ和Z不同的组织。11种TSM的化学计量校准以及其ρ与真实组织的接近程度(≤ 0.5%)导致与使用商业体模的研究相比,ρ计算差异更小(p < 0.024)。应用能量减法算法通过光谱分离以及减少束硬化伪影和噪声进一步减轻了误差,与120 kVp扫描相比,分别降低了80 - 140 kVp扫描(p < 0.003)和100 - 140 kVp扫描(p < 0.0001)时ρ绝对差值的均值和标准差。此外,一种参数化算法在80 - 140 kVp扫描时降低了与真实组织的Z差异;对于甲状腺,残余误差≤ 0.18个Z单位(而先前研究中使用Gammex 467体模时为0.2)。这些结果进一步表明,双能算法与化学计量学相结合可以减少真实组织ρ计算中的误差,以改善放射治疗计划中剂量计算的不均匀性,特别是在CT机X射线管的能谱不可用时。