Kainosho Masatsune, Miyanoiri Yohei, Terauchi Tsutomu, Takeda Mitsuhiro
Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo, 192-0397, Japan.
Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan.
J Biomol NMR. 2018 Jul;71(3):119-127. doi: 10.1007/s10858-018-0198-x. Epub 2018 Jun 22.
In this perspective, we describe our efforts to innovate the current isotope-aided NMR methodology to investigate biologically important large proteins and protein complexes, for which only limited structural information could be obtained by conventional NMR approaches. At the present time, it is widely believed that only backbone amide and methyl signals are amenable for investigating such difficult targets. Therefore, our primary mission is to disseminate our novel knowledge within the biological NMR community; specifically, that any type of NMR signals other than methyl and amide groups can be obtained, even for quite large proteins, by optimizing the transverse relaxation properties by isotope labeling methods. The idea of "TROSY by isotope labeling" has been cultivated through our endeavors aiming to improve the original stereo-array isotope labeling (SAIL) method (Kainosho et al., Nature 440:52-57, 2006). The SAIL TROSY methods subsequently culminated in the successful observations of individual NMR signals for the side-chain aliphatic and aromatic CH groups in large proteins, as exemplified by the 82 kDa single domain protein, malate synthase G. Meanwhile, the expected role of NMR spectroscopy in the emerging integrative structural biology has been rapidly shifting, from structure determination to the acquisition of biologically relevant structural dynamics, which are poorly accessible by X-ray crystallography or cryo-electron microscopy. Therefore, the newly accessible NMR probes, in addition to the methyl and amide signals, will open up a new horizon for investigating difficult protein targets, such as membrane proteins and supramolecular complexes, by NMR spectroscopy. We briefly introduce our latest results, showing that the protons attached to C-atoms give profoundly narrow H-NMR signals even for large proteins, by isolating them from the other protons using the selective deuteration. The direct H observation methods exhibit the highest sensitivities, as compared to heteronuclear multidimensional spectroscopy, in which the H-signals are acquired via the spin-coupled C- and/or N-nuclei. Although the selective deuteration method was launched a half century ago, as the first milestone in the following prosperous history of isotope-aided NMR methods, our results strongly imply that the low-dimensional H-direct observation NMR methods should be revitalized in the coming era, featuring ultrahigh-field spectrometers beyond 1 GHz.
从这个角度出发,我们描述了为创新当前的同位素辅助核磁共振方法所做的努力,以研究具有生物学重要性的大蛋白质和蛋白质复合物,而传统的核磁共振方法只能获得关于它们的有限结构信息。目前,人们普遍认为只有主链酰胺和甲基信号适用于研究这类具有挑战性的目标。因此,我们的主要任务是在生物核磁共振领域传播我们的新知识;具体而言,即使对于相当大的蛋白质,通过同位素标记方法优化横向弛豫特性,也可以获得甲基和酰胺基团以外的任何类型的核磁共振信号。“通过同位素标记实现TROSY”的想法是通过我们旨在改进原始立体阵列同位素标记(SAIL)方法(Kainosho等人,《自然》440:52 - 57,2006年)的努力而形成的。SAIL TROSY方法随后最终成功观测到了大蛋白质中侧链脂肪族和芳香族CH基团的单个核磁共振信号,以82 kDa的单结构域蛋白质苹果酸合酶G为例。与此同时,核磁共振光谱在新兴的整合结构生物学中预期的作用已经迅速转变,从结构测定转向获取生物学相关的结构动力学,而这是X射线晶体学或冷冻电子显微镜难以获得的。因此,除了甲基和酰胺信号之外,新可获取的核磁共振探针将为通过核磁共振光谱研究诸如膜蛋白和超分子复合物等具有挑战性的蛋白质目标开辟新的视野。我们简要介绍我们的最新结果,即通过选择性氘代将与碳原子相连的质子与其他质子隔离开来,即使对于大蛋白质,这些质子也能给出极窄的氢核磁共振信号。与异核多维光谱相比,直接氢观测方法具有最高的灵敏度,在异核多维光谱中,氢信号是通过自旋耦合的碳和/或氮核获取的。尽管选择性氘代方法在半个世纪前就已推出,作为同位素辅助核磁共振方法后续繁荣历史中的第一个里程碑,但我们的结果强烈表明,在即将到来的以超过1 GHz的超高场光谱仪为特征的时代,低维氢直接观测核磁共振方法应该得到复兴。