Suppr超能文献

使用 13C-葡萄糖对糖蛋白进行核磁共振(NMR)的稀疏同位素标记。

Sparse isotope labeling for nuclear magnetic resonance (NMR) of glycoproteins using 13C-glucose.

机构信息

Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd., Athens, GA 30602, USA.

Department of Chemistry.

出版信息

Glycobiology. 2021 May 3;31(4):425-435. doi: 10.1093/glycob/cwaa071.

Abstract

Preparation of samples for nuclear magnetic resonance (NMR) characterization of larger proteins requires enrichment with less abundant, NMR-active, isotopes such as 13C and 15N. This is routine for proteins that can be expressed in bacterial culture where low-cost isotopically enriched metabolic substrates can be used. However, it can be expensive for glycosylated proteins expressed in mammalian culture where more costly isotopically enriched amino acids are usually used. We describe a simple, relatively inexpensive procedure in which standard commercial media is supplemented with 13C-enriched glucose to achieve labeling of all glycans plus all alanines of the N-terminal domain of the highly glycosylated protein, CEACAM1. We demonstrate an ability to detect partially occupied N-glycan sites, sites less susceptible to processing by an endoglycosidase, and some unexpected truncation of the amino acid sequence. The labeling of both the protein (through alanines) and the glycans in a single culture requiring no additional technical expertise past standard mammalian expression requirements is anticipated to have several applications, including structural and functional screening of the many glycosylated proteins important to human health.

摘要

为了进行更大的蛋白质的核磁共振(NMR)特征分析,需要对其进行富集,使用较少的丰度、NMR 活性同位素,如 13C 和 15N。这对于可以在细菌培养中表达的蛋白质来说是常规操作,因为可以使用低成本的同位素富集代谢底物。然而,对于在哺乳动物培养中表达的糖基化蛋白质来说,这可能会很昂贵,因为通常使用更昂贵的同位素富集氨基酸。我们描述了一种简单、相对廉价的方法,即在标准商业培养基中添加 13C 富集的葡萄糖,以实现高度糖基化蛋白质 CEACAM1 的所有聚糖和 N 末端结构域中所有丙氨酸的标记。我们证明了能够检测部分占据的 N-糖基化位点、对内糖苷酶处理不太敏感的位点以及一些意想不到的氨基酸序列截断。通过单一培养物对蛋白质(通过丙氨酸)和聚糖进行标记,不需要超出标准哺乳动物表达要求的额外技术专业知识,预计将有多种应用,包括对许多与人类健康相关的糖基化蛋白质的结构和功能进行筛选。

相似文献

1
Sparse isotope labeling for nuclear magnetic resonance (NMR) of glycoproteins using 13C-glucose.
Glycobiology. 2021 May 3;31(4):425-435. doi: 10.1093/glycob/cwaa071.
2
13C-sialic acid labeling of glycans on glycoproteins using ST6Gal-I.
J Am Chem Soc. 2008 Sep 10;130(36):11864-5. doi: 10.1021/ja804614w. Epub 2008 Aug 14.
4
A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells.
Biochemistry. 1992 Dec 29;31(51):12713-8. doi: 10.1021/bi00166a001.
5
Stable isotope labeling approaches for NMR characterization of glycoproteins using eukaryotic expression systems.
J Biomol NMR. 2018 Jul;71(3):193-202. doi: 10.1007/s10858-018-0169-2. Epub 2018 Feb 28.
6
Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins.
J Biomol NMR. 2010 Jan;46(1):51-65. doi: 10.1007/s10858-009-9362-7. Epub 2009 Aug 19.
9
Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation.
J Biomol NMR. 1999 Feb;13(2):149-59. doi: 10.1023/a:1008398313350.
10
An economic approach to isotopic enrichment of glycoproteins expressed from Sf9 insect cells.
J Biomol NMR. 2006 Dec;36(4):225-33. doi: 10.1007/s10858-006-9086-x. Epub 2006 Oct 25.

引用本文的文献

1
Glycan Shape, Motions, and Interactions Explored by NMR Spectroscopy.
JACS Au. 2024 Jan 3;4(1):20-39. doi: 10.1021/jacsau.3c00639. eCollection 2024 Jan 22.
2
The impact of glycosylation on the structure, function, and interactions of CD14.
Glycobiology. 2024 Apr 1;34(3). doi: 10.1093/glycob/cwae002.
3
Synthesis of C-methyl-labeled amino acids and their incorporation into proteins in mammalian cells.
Org Biomol Chem. 2023 Nov 29;21(46):9216-9229. doi: 10.1039/d3ob01320k.
4
Primary Structure of Glycans by NMR Spectroscopy.
Chem Rev. 2023 Feb 8;123(3):1040-1102. doi: 10.1021/acs.chemrev.2c00580. Epub 2023 Jan 9.
5
AssignSLP_GUI, a software tool exploiting AI for NMR resonance assignment of sparsely labeled proteins.
J Magn Reson. 2022 Dec;345:107336. doi: 10.1016/j.jmr.2022.107336. Epub 2022 Nov 19.
8
The antibody-binding Fc gamma receptor IIIa / CD16a is N-glycosylated with high occupancy at all five sites.
Curr Res Immunol. 2022 Jun 9;3:128-135. doi: 10.1016/j.crimmu.2022.05.005. eCollection 2022.

本文引用的文献

1
Reaction Energetics and C Fractionation of Alanine Transamination in the Aqueous and Gas Phases.
J Phys Chem A. 2020 Mar 12;124(10):2077-2089. doi: 10.1021/acs.jpca.9b11783. Epub 2020 Feb 13.
2
Insights into Allosteric Control of Human Blood Group A and B Glycosyltransferases from Dynamic NMR.
ChemistryOpen. 2019 Jun 11;8(6):760-769. doi: 10.1002/open.201900116. eCollection 2019 Jun.
3
Perspective: next generation isotope-aided methods for protein NMR spectroscopy.
J Biomol NMR. 2018 Jul;71(3):119-127. doi: 10.1007/s10858-018-0198-x. Epub 2018 Jun 22.
5
Production of isotope-labeled proteins in insect cells for NMR.
J Biomol NMR. 2018 Jul;71(3):173-184. doi: 10.1007/s10858-018-0172-7. Epub 2018 Apr 23.
6
The recognition of glycans by protein receptors. Insights from NMR spectroscopy.
Chem Commun (Camb). 2018 May 8;54(38):4761-4769. doi: 10.1039/c8cc01444b.
7
Stable isotope labeling approaches for NMR characterization of glycoproteins using eukaryotic expression systems.
J Biomol NMR. 2018 Jul;71(3):193-202. doi: 10.1007/s10858-018-0169-2. Epub 2018 Feb 28.
8
Expression system for structural and functional studies of human glycosylation enzymes.
Nat Chem Biol. 2018 Feb;14(2):156-162. doi: 10.1038/nchembio.2539. Epub 2017 Dec 18.
9
Glycosylation Promotes the Random Coil to Helix Transition in a Region of a Protist Skp1 Associated with F-Box Binding.
Biochemistry. 2018 Feb 6;57(5):511-515. doi: 10.1021/acs.biochem.7b01033. Epub 2017 Dec 28.
10
The sweet spot for biologics: recent advances in characterization of biotherapeutic glycoproteins.
Expert Rev Proteomics. 2018 Jan;15(1):13-29. doi: 10.1080/14789450.2018.1404907. Epub 2017 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验