Suppr超能文献

证据权重策略中非测试方法使用的标准及应用

Criteria and Application on the Use of Nontesting Methods within a Weight of Evidence Strategy.

作者信息

Lombardo Anna, Raitano Giuseppa, Gadaleta Domenico, Benfenati Emilio

机构信息

IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.

出版信息

Methods Mol Biol. 2018;1800:199-218. doi: 10.1007/978-1-4939-7899-1_9.

Abstract

Nontesting methods (NTM) proved to be a valuable resource for risk assessment of chemical substances. Indeed, they can be particularly useful when the information provided by different sources was integrated to increase the confidence in the final result. This integration can be sometimes difficult because different methods can lead to conflicting results, and because a clear guideline for integrating information from different sources was not available in the recent past. In this chapter, we present and discuss the recently published guideline from EFSA for integrating and weighting evidence for scientific assessment. Moreover, a practical example on the application of these integration principles on evidence from different in silico models was shown for the assessment of bioconcentration factor (BCF). This example represents a demonstration of the suitability and effectiveness of in silico methods for risk assessment, as well as a practical guide to end-users to perform similar analyses on likely hazardous chemicals.

摘要

非测试方法(NTM)被证明是化学物质风险评估的宝贵资源。事实上,当整合不同来源提供的信息以提高对最终结果的信心时,它们可能特别有用。这种整合有时可能很困难,因为不同的方法可能导致相互矛盾的结果,而且因为最近没有明确的指南来整合来自不同来源的信息。在本章中,我们介绍并讨论了欧洲食品安全局(EFSA)最近发布的关于整合和权衡科学评估证据的指南。此外,还展示了一个关于将这些整合原则应用于来自不同计算机模拟模型证据的实际示例,用于生物富集因子(BCF)的评估。这个示例展示了计算机模拟方法在风险评估中的适用性和有效性,同时也为终端用户对可能有害的化学品进行类似分析提供了实用指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验