Computational Biology and Simulation Group, Technische Universität Darmstadt, 64287 Darmstadt, Germany.
Department of Biosciences, University of Milan, 20133 Milan, Italy.
J Biol Chem. 2018 Aug 17;293(33):12908-12918. doi: 10.1074/jbc.RA118.002139. Epub 2018 Jun 23.
Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels play a critical role in the control of pacemaking in the heart and repetitive firing in neurons. In HCN channels, the intracellular cyclic nucleotide-binding domain (CNBD) is connected to the transmembrane portion of the channel (TMPC) through a helical domain, the C-linker. Although this domain is critical for mechanical signal transduction, the conformational dynamics in the C-linker that transmit the nucleotide-binding signal to the HCN channel pore are unknown. Here, we use linear response theory to analyze conformational changes in the C-linker of the human HCN1 protein, which couple cAMP binding in the CNBD with gating in the TMPC. By applying a force to the tip of the so-called "elbow" of the C-linker, the coarse-grained calculations recapitulate the same conformational changes triggered by cAMP binding in experimental studies. Furthermore, in our simulations, a displacement of the C-linker parallel to the membrane plane ( horizontally) induced a rotational movement resulting in a distinct tilting of the transmembrane helices. This movement, in turn, increased the distance between the voltage-sensing S4 domain and the surrounding transmembrane domains and led to a widening of the intracellular channel gate. In conclusion, our computational approach, combined with experimental data, thus provides a more detailed understanding of how cAMP binding is mechanically coupled over long distances to promote voltage-dependent opening of HCN channels.
超极化激活环核苷酸门控阳离子通道(HCN)在心脏起搏和神经元重复放电的控制中起着关键作用。在 HCN 通道中,细胞内环核苷酸结合域(CNBD)通过螺旋域,即 C 连接子,与通道的跨膜部分(TMPC)相连。尽管该结构域对机械信号转导至关重要,但将核苷酸结合信号传递到 HCN 通道孔的 C 连接子中的构象动力学尚不清楚。在这里,我们使用线性响应理论来分析人 HCN1 蛋白 C 连接子的构象变化,该变化将 CNBD 中的 cAMP 结合与 TMPC 中的门控作用偶联起来。通过对所谓的“肘”部 C 连接子的尖端施加力,粗粒化计算再现了实验研究中由 cAMP 结合触发的相同构象变化。此外,在我们的模拟中,C 连接子沿膜平面(水平方向)的位移引起旋转运动,导致跨膜螺旋明显倾斜。这种运动反过来又增加了电压感应 S4 结构域与周围跨膜结构域之间的距离,并导致细胞内通道门的加宽。总之,我们的计算方法结合实验数据,从而提供了对 cAMP 结合如何通过长距离机械偶联促进 HCN 通道电压依赖性开放的更详细的理解。