Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada.
Langmuir. 2018 Dec 11;34(49):15000-15013. doi: 10.1021/acs.langmuir.8b01368. Epub 2018 Jul 9.
Interfacing DNA with liposomes has produced a diverse range of programmable soft materials, devices, and drug delivery vehicles. By simply controlling liposomal composition, bilayer fluidity, lipid domain formation, and surface charge can be systematically varied. Recent development in DNA research has produced not only sophisticated nanostructures but also new functions including ligand binding and catalysis. For noncationic liposomes, a DNA is typically covalently linked to a hydrophobic or lipid moiety that can be inserted into lipid membranes. In this article, we discuss fundamental biointerfaces formed between DNA and noncationic liposomes. The methods to prepare such conjugates and the interactions at the membrane interfaces are also discussed. The effect of DNA lateral diffusion on fluid bilayer membranes and the effect of membrane on DNA assembly are emphasized. DNA hybridization can be programmed to promote fusion of lipid membranes. Representative applications of this conjugate for drug delivery, biosensor development, and directed assembly of materials are briefly described toward the end. Some future research directions are also proposed to further understand this biointerface.
将 DNA 与脂质体连接起来,产生了各种可编程的软材料、器件和药物输送载体。通过简单地控制脂质体的组成、双层流动性、脂质域形成和表面电荷,可以系统地改变这些性质。最近的 DNA 研究不仅产生了复杂的纳米结构,而且还产生了新的功能,包括配体结合和催化。对于非阳离子脂质体,DNA 通常通过共价键与疏水性或脂质部分连接,该部分可以插入脂质膜中。本文讨论了 DNA 和非阳离子脂质体之间形成的基本生物界面。还讨论了制备此类缀合物的方法以及在膜界面处的相互作用。强调了 DNA 侧向扩散对流体双层膜的影响以及膜对 DNA 组装的影响。DNA 杂交可以编程以促进脂质膜的融合。最后简要描述了这种缀合物在药物输送、生物传感器开发和材料定向组装方面的一些应用。还提出了一些未来的研究方向,以进一步了解这种生物界面。