Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
Nat Rev Chem. 2024 Jun;8(6):454-470. doi: 10.1038/s41570-024-00606-1. Epub 2024 May 15.
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
细胞是生命的基本单位,它们在组织中协调着复杂的功能——运动、适应、复制、通讯和自组织。细胞起源于时空组织的结构和机制,加上信号网络中的信息处理,体现了“传感器-处理器-执行器”的范例。我们能否从这些过程中汲取灵感,构建具有类似生命特征的原始人工系统?使用从头设计方法,我们可以揭示生命进化路径的哪些方面?本文综述了利用结构和动态 DNA 纳米科学的强大工具包来构建合成细胞的进展。我们描述了 DNA 如何成为工程化整个合成细胞或亚细胞实体的多功能工具,以及 DNA 如何实现复杂的行为,包括运动和信息处理,以适应和互动过程。我们绘制了 DNA 赋能的合成细胞的未来方向,设想了互动系统,其中合成细胞在群落内以及与活细胞进行通讯。