Lysine Methylation and DNA Damage Laboratory, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK.
Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo 169-8050, Japan.
Mol Cell. 2018 Jul 5;71(1):25-41.e6. doi: 10.1016/j.molcel.2018.05.018. Epub 2018 Jun 21.
Components of the Fanconi anemia and homologous recombination pathways play a vital role in protecting newly replicated DNA from uncontrolled nucleolytic degradation, safeguarding genome stability. Here we report that histone methylation by the lysine methyltransferase SETD1A is crucial for protecting stalled replication forks from deleterious resection. Depletion of SETD1A sensitizes cells to replication stress and leads to uncontrolled DNA2-dependent resection of damaged replication forks. The ability of SETD1A to prevent degradation of these structures is mediated by its ability to catalyze methylation on Lys4 of histone H3 (H3K4) at replication forks, which enhances FANCD2-dependent histone chaperone activity. Suppressing H3K4 methylation or expression of a chaperone-defective FANCD2 mutant leads to loss of RAD51 nucleofilament stability and severe nucleolytic degradation of replication forks. Our work identifies epigenetic modification and histone mobility as critical regulatory mechanisms in maintaining genome stability by restraining nucleases from irreparably damaging stalled replication forks.
范可尼贫血症和同源重组途径的组件在保护新复制的 DNA 免受失控的核酶降解方面起着至关重要的作用,从而保护基因组的稳定性。在这里,我们报告组蛋白赖氨酸甲基转移酶 SETD1A 的甲基化对于保护停滞的复制叉免受有害的切除至关重要。SETD1A 的耗竭使细胞对复制应激敏感,并导致受损复制叉的不受控制的 DNA2 依赖性切除。SETD1A 防止这些结构降解的能力是通过其在复制叉处催化组蛋白 H3(H3K4)赖氨酸 4 上的甲基化来介导的,这增强了 FANCD2 依赖性组蛋白伴侣活性。抑制 H3K4 甲基化或表达伴侣缺陷型 FANCD2 突变体导致 RAD51 核丝稳定性丧失和复制叉的严重核酶降解。我们的工作确定了表观遗传修饰和组蛋白迁移是通过限制核酸酶对停滞的复制叉造成不可修复的损伤来维持基因组稳定性的关键调节机制。