Suppr超能文献

乙型肝炎基因治疗渐趋成熟。

Hepatitis B Gene Therapy Coming to Age.

作者信息

Soriano Vicente

机构信息

La Paz University Hospital and UNIR Health Sciences School, Madrid, Spain.

出版信息

AIDS Rev. 2018 Apr-Jun;20(2):125-127.

Abstract

The major pandemics caused by chronic viral infections is produced by HIV, hepatitis C virus (HCV), and hepatitis B virus (HBV), with estimates of 38, 70, and 250 million people worldwide, respectively (Fig. 1). During the last couple of years, the advent of direct oral antivirals has allowed pursuing global HCV eradication. In an unprecedented manner, these drugs cure more than 95% of hepatitis C patients when given for only 2-3 months. The enthusiasm on HCV has renewed the interest for curative strategies for both HIV and HBV. However, important biological differences between all three viruses may preclude envisioning a similar rapid success for either HIV or HBV than for HCV infection. As shown in figure 1, once infection of targeted cells has occurred, the viral genetic material only replicates in the cytosol for HCV whereas it enters the nucleus and integrates into the chromosomes as provirus for HIV or is converted in a circular covalently closed form (cccDNA) for HBV (Fig. 1). Blocking viral nucleic acid replication for a minimum lag of time allows definitive clearance of HCV infection, with degradation of residual cytoplasmic HCV-RNA strands. In contrast, blocking viral replication has only a transient effect on HIV or HBV, as mRNA expression resumes following treatment discontinuation, given the stability of the HIV provirus or the HBV cccDNA, respectively. The European Liver meeting took held in Paris on April 2018. A relatively large number of presentations addressed distinct new hepatitis B therapeutic strategies. Table 1 summarizes some of the molecules that have been investigated so far with more promising results, grouping them into distinct drug classes (Soriano et al. Exp Op Inv Drugs 2017;26:843-51), based on their distinct mechanism of action and targeted steps in the HBV life cycle (Fig. 2). Considering the pros and cons of novel HBV therapeutic candidates, it has become apparent new HBV gene therapies among the most attractive. Several advances have contributed to position gene therapy in front within the experimental HBV armamentarium. First, progresses in delivery systems, including the use of polymers and nanoformulations have allowed developing easier forms of administration that now are becoming subcutaneous and monthly. Second, the synthetic production of oligonucleotide formulations has reduced costs. Third, the specificity against HBV is higher than for other experimental agents, as immune modulators that enhance innate immunity, such as TLR agonists (i.e., GS-9620) or checkpoint inhibitors (i.e., nivolumab). Fourth, significant declines in serum hepatitis B surface antigen (HBsAg) are demonstrated during gene therapy, which have never been seen using the most potent polymerase inhibitors (i.e., tenofovir or entecavir). Finally, unanticipated significant reductions in cccDNA are seen with HBV gene therapy, most likely as prove of an indirect benefit of waning the immunosuppressive effect of large over amounts of HBsAg released by infected hepatocytes that contributes to T-cell exhaustion. In a pioneering study, Roche was the first to publish the potent effect of an oral small molecule that blocked HBV gene expression (Mueller et al. J Hepatol 2018;68:412-20). The drug belonged to the dihydroquinolizinone class, and directly or indirectly modified viral RNAs, promoting their degradation. This posttranscriptional silencing was accompanied by rapid drops in HBV-DNA and more importantly in serum HBsAg in the humanized mice. However, Roche decided to discontinue any further clinical development of the drug. Nowadays, two major groups of agents are being developed as HBV gene therapies. At this time, interference RNA (iRNA) molecules and nucleic acid polymers (NAPs) are the most promising. Overall, iRNA is double-stranded RNA molecules, 20 nucleotides long. One strand matches a segment of specific HBV mRNA and induces its degradation. Several iRNA molecules have entered into Phase II clinical trials (Flisiak et al. Exp Op Biol Ther, in press), including ARB-1467 and AB-729 (Arbutus), ARO-HBV (Arrowhead), ALN-HBV (Alnylam), and IONIS-HBVRx (Ionis). In most cases, they are tested as part of combination therapy with nucleos(t)ide analogs and/or peginterferon. NAPs are phosphorothioate 40 length oligonucleotides that no map any HBV sequence. However, they interact with a liver host target protein (apolipoprotein-like) and result in specific inhibition of HBV mRNAs. This is followed by rapid suppression of HBsAg release (Roehl et al. Mol Ther Nuc Acids 2017;8:1-12). In a pilot study with intravenous REP-2139, investigators from Replicor demonstrated strong reductions in HBV-DNA along with significant drops in HBsAg and seroconversion in some patients. More interestingly was the recognition of significant reductions in hepatic cccDNA, most likely a result of an indirect effect following the removal of large amounts of HBsAg from the bloodstream that contributes to impaired T-cell responses in chronic hepatitis B patients (Bazinet et al. EASL, Paris 2018; abstract FRI-343). An improved NAP, named REP-2165 and subcutaneous administration are currently being tested.

摘要

由慢性病毒感染引起的主要大流行是由人类免疫缺陷病毒(HIV)、丙型肝炎病毒(HCV)和乙型肝炎病毒(HBV)导致的,全球感染人数估计分别为3800万、7000万和2.5亿(图1)。在过去几年中,直接口服抗病毒药物的出现使得全球根除丙型肝炎成为可能。这些药物以前所未有的方式,仅需服用2 - 3个月就能治愈超过95%的丙型肝炎患者。对丙型肝炎的热情重新燃起了对HIV和HBV治愈策略的兴趣。然而,这三种病毒之间重要的生物学差异可能使人们无法设想HIV或HBV能像丙型肝炎感染那样迅速取得类似的成功。如图1所示,一旦发生对靶细胞的感染,HCV的病毒遗传物质仅在细胞质中复制,而HIV的病毒遗传物质进入细胞核并整合到染色体中形成前病毒,HBV的病毒遗传物质则转化为共价闭合环状形式(cccDNA)(图1)。阻断病毒核酸复制一段最短的滞后时间可实现HCV感染的彻底清除,残余细胞质HCV - RNA链会降解。相比之下,阻断病毒复制对HIV或HBV仅具有短暂作用,因为分别鉴于HIV前病毒或HBV cccDNA的稳定性,停药后mRNA表达会恢复。2018年4月在巴黎举行了欧洲肝脏会议。相当多的报告涉及不同的新型乙型肝炎治疗策略。表1总结了一些迄今为止研究的、结果更有前景的分子,并根据它们在HBV生命周期中不同的作用机制和靶向步骤将它们分为不同的药物类别(索里亚诺等人,《实验性药物的专家意见》2017年;26:843 - 51)(图2)。考虑到新型HBV治疗候选药物的优缺点,很明显新的HBV基因疗法是最具吸引力的。多项进展促使基因疗法在实验性HBV治疗手段中处于领先地位。首先,递送系统的进展,包括聚合物和纳米制剂的使用,使得开发出更简便的给药形式成为可能,现在这些形式正变得可以皮下注射且每月一次。其次,寡核苷酸制剂的合成生产降低了成本。第三,对HBV的特异性高于其他实验药物,比如增强先天免疫的免疫调节剂,如Toll样受体激动剂(即GS - 9620)或检查点抑制剂(即纳武单抗)。第四,基因治疗期间血清乙型肝炎表面抗原(HBsAg)显著下降,这是使用最有效的聚合酶抑制剂(即替诺福韦或恩替卡韦)从未见过的情况。最后,HBV基因治疗可使cccDNA意外大幅减少,很可能是由于减少了感染肝细胞释放的大量HBsAg的免疫抑制作用,从而间接产生益处,这种免疫抑制作用会导致T细胞耗竭。在一项开创性研究中,罗氏公司率先发表了一种口服小分子阻断HBV基因表达的强效作用(米勒等人,《肝脏病学杂志》2018年;68:412 - 20)。该药物属于二氢喹啉嗪酮类,直接或间接修饰病毒RNA,促进其降解。这种转录后沉默伴随着人源化小鼠体内HBV - DNA以及更重要的血清HBsAg的快速下降。然而,罗氏公司决定停止该药物的进一步临床开发。如今,有两大类药物正在作为HBV基因疗法进行研发。目前,干扰RNA(iRNA)分子和核酸聚合物(NAPs)最具前景。总体而言,iRNA是20个核苷酸长的双链RNA分子。其中一条链与特定HBV mRNA的一段序列匹配并诱导其降解。几种iRNA分子已进入II期临床试验(弗利萨克等人,《实验性生物治疗》,即将发表),包括ARB - 1467和AB - 729(阿瑞斯生物制药公司)、ARO - HBV(箭头制药公司)、ALN - HBV(阿尔尼拉姆制药公司)和IONIS - HBVRx(艾奥尼斯制药公司)。在大多数情况下,它们作为与核苷(酸)类似物和/或聚乙二醇干扰素联合治疗的一部分进行测试。NAPs是长度为40的硫代磷酸酯寡核苷酸,它们不匹配任何HBV序列。然而,它们与肝脏宿主靶蛋白(载脂蛋白样)相互作用,导致对HBV mRNA的特异性抑制。随后会快速抑制HBsAg释放(勒尔等人,《分子治疗:核酸》2017年;8:1 - 12)。在一项关于静脉注射REP - 2139的初步研究中,Replicon公司的研究人员证明,一些患者的HBV - DNA大幅减少,同时HBsAg显著下降并发生血清学转换。更有趣的是,发现肝脏cccDNA显著减少,这很可能是由于从血液中清除大量HBsAg后产生的间接效应,而大量HBsAg会导致慢性乙型肝炎患者的T细胞反应受损(巴齐内特等人,欧洲肝脏研究学会,巴黎2018年;摘要FRI - 343)。一种名为REP - 2165的改良NAP和皮下给药目前正在进行测试。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验