ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.
Universitat Pompeu Fabra (UPF), Barcelona, Spain.
Int J Epidemiol. 2018 Aug 1;47(4):1343-1354. doi: 10.1093/ije/dyy117.
Multicentre studies are common in epidemiological research aiming at identifying disease risk factors. A major advantage of multicentre over single-centre studies is that, by including a larger number of participants, they allow consideration of rare outcomes and exposures. Their multicentric nature introduces some complexities at the step of data analysis, in particular when it comes to controlling for confounding by centre, which is the focus of this tutorial. Commonly, epidemiologists use one of the following options: pooling all centre-specific data and adjusting for centre using fixed effects; adjusting for centre using random effects; or fitting centre-specific models and combining the results in a meta-analysis. Here, we illustrate the similarities of and differences between these three modelling approaches, explain the reasons why they may provide different conclusions and offer advice on which model to choose depending on the characteristics of the study. Two key issues to examine during the analyses are to distinguish within-centre from between-centre associations, and the possible heterogeneity of the effects (of exposure and/or confounders) by centre. A real epidemiological study is used to illustrate a situation in which these various options yield different results. A synthetic dataset and R and Stata codes are provided to reproduce the results.
多中心研究在旨在确定疾病风险因素的流行病学研究中很常见。与单中心研究相比,多中心研究的一个主要优势是,通过纳入更多的参与者,可以考虑罕见的结局和暴露因素。它们的多中心性质在数据分析步骤中引入了一些复杂性,特别是在控制中心混杂因素时,这是本教程的重点。通常,流行病学家使用以下选项之一:合并所有中心特异性数据,并使用固定效应调整中心;使用随机效应调整中心;或拟合中心特异性模型,并在荟萃分析中组合结果。在这里,我们说明了这三种建模方法的相似之处和不同之处,解释了它们为何可能提供不同结论的原因,并根据研究的特点提供了关于选择哪种模型的建议。在分析过程中需要检查两个关键问题,即区分中心内和中心间的关联,以及中心间(暴露和/或混杂因素)效应的可能异质性。使用真实的流行病学研究来说明这些不同选择产生不同结果的情况。提供了一个综合数据集和 R 和 Stata 代码来重现结果。