Methods in Evidence Synthesis Unit, School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, Victoria, 3004 Australia.
Knowledge Translation Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, 209 Victoria Street, Toronto, Ontario, Canada; Institute for Health Policy, Management, and Evaluation, University of Toronto, 155 College Street, Toronto, Ontario, Canada.
J Clin Epidemiol. 2024 Oct;174:111492. doi: 10.1016/j.jclinepi.2024.111492. Epub 2024 Aug 2.
Meta-analysis is a statistical method for combining quantitative results across studies. A fundamental decision in undertaking a meta-analysis is choosing an appropriate model for analysis. This is the second of two companion articles which have the joint aim of describing the different meta-analysis models. In the first article, we focused on the common-effect (also known as fixed-effect [singular]) model, and in this article, we focus on the random-effects model. We describe the key assumptions underlying the random-effects model, how it is related to the common-effect and fixed-effects [plural] models, and present some of the arguments for selecting one model over another. We outline some of the methods for fitting a random-effects model. Finally, we present an illustrative example to demonstrate how the results can differ depending on the chosen model and method. Understanding the assumptions of the different meta-analysis models, and the questions they address, is critical for meta-analysis model selection and interpretation.
荟萃分析是一种用于合并研究间定量结果的统计方法。进行荟萃分析的一个基本决策是选择合适的分析模型。这是两篇配套文章中的第二篇,两篇文章的共同目的是描述不同的荟萃分析模型。在第一篇文章中,我们重点介绍了常用效应(也称为固定效应[单数])模型,而在本篇文章中,我们重点介绍了随机效应模型。我们描述了随机效应模型的关键假设,它与常用效应和固定效应[复数]模型的关系,并提出了一些选择一种模型而不是另一种模型的理由。我们概述了拟合随机效应模型的一些方法。最后,我们提供了一个示例来说明如何根据所选模型和方法得出不同的结果。了解不同荟萃分析模型的假设以及它们解决的问题,对于荟萃分析模型选择和解释至关重要。