Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
Department of Chemistry, Duke University, Durham, NC, 27708, USA.
Adv Mater. 2018 Aug;30(32):e1802563. doi: 10.1002/adma.201802563. Epub 2018 Jun 25.
Rechargeable magnesium batteries have attracted increasing attention due to the high theoretical volumetric capacities, dendrite formation-free characteristic and low cost of Mg metal anodes. However, the development of magnesium batteries is seriously hindered by the lack of capable cathode materials with long cycling life and fast solid-state diffusion kinetics for highly-polarized divalent Mg ions. Herein, vanadium tetrasulfide (VS ) with special one-dimensional atomic-chain structure is reported to be able to serve as a favorable cathode material for high-performance magnesium batteries. Through a surfactant-assisted solution-phase process, sea-urchin-like VS nanodendrites are controllably prepared. Benefiting from the chain-like crystalline structure of VS , the S dimers in the VS nanodendrites provide abundant sites for Mg insertion. Moreover, the VS atomic-chains bonded by weak van der Waals forces are beneficial to the diffusion kinetics of Mg ions inside the open channels of VS . Through a series of systematic ex situ characterizations and density functional theory calculations, the magnesiation/demagnesiation mechanism of VS are elucidated. The VS nanodendrites present remarkable performance for Mg storage among existing cathode materials, exhibiting a remarkable initial discharge capacity of 251 mAh g at 100 mA g and an impressive long-term cyclability at large current density of 500 mA g (74 mAh g after 800 cycles).
由于镁金属阳极具有高理论体积容量、无枝晶形成特性和低成本等优点,可充电镁电池受到了越来越多的关注。然而,镁电池的发展受到严重阻碍,缺乏具有长循环寿命和快速固态扩散动力学的高性能二价镁离子的可用阴极材料。在此,报道了具有特殊一维原子链结构的四硫化钒 (VS) 可用作高性能镁电池的理想阴极材料。通过表面活性剂辅助的溶液相工艺,可控制备出了具有仿海胆结构的 VS 纳米树枝状晶体。受益于 VS 的链状晶体结构,VS 纳米树枝状晶体中的 S 二聚体提供了丰富的镁嵌入位点。此外,由较弱范德华力结合的 VS 原子链有利于镁离子在 VS 开放通道内的扩散动力学。通过一系列系统的原位和非原位表征和密度泛函理论计算,阐明了 VS 的镁化/脱镁化机制。VS 纳米树枝状晶体在现有的阴极材料中表现出优异的镁存储性能,在 100 mA g 的电流密度下具有 251 mAh g 的初始放电容量,在 500 mA g 的大电流密度下具有令人印象深刻的长期循环稳定性(800 次循环后为 74 mAh g)。