School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
School of Metallurgy and Environment, Central South University, Changsha 410083, China; State Key Laboratory of Advanced Chemical Power Sources, Guizhou Meiling Power Sources Co. Ltd., Zunyi, Guizhou 563003, China.
J Colloid Interface Sci. 2018 Nov 1;529:357-365. doi: 10.1016/j.jcis.2018.06.039. Epub 2018 Jun 19.
NiCoO is a potential anode material for lithium ion battery due to its many advantages, such as high theoretical capacitance, low cost, and good electrochemical activity. In this study, mesoporous NiCoO double-hemisphere (3-5 μm) with high surface area (270.68 m·g) and excellent electrochemical performances has been synthesized through a facile precipitation method followed with thermal treatment process. The prepared NiCoO is pure phase and can be indexed as a face-centered-cubic with a typical spinel structure. Electrochemical tests show the prepared material has high specific capacities (910 mAh·g at 100 mA·g), excellent cyclicity (908 mAh·g at 100 mA·g after 60 cycles) and remarkable high rate performance (after 100 cycles, 585 mAh·g at 400 mAh·g, 415 mAh·g at 800 mAh·g and 320 mAh·g at 1600 mAh·g with coulombic efficiencies of almost 100%). The excellent performances of prepared NiCoO are mainly caused by the unique double-hemisphere structure, which has large surface area, gives material more opportunity to contact with electrolyte and facilitates lithium ion spreading into the material along the radical direction, resulting in a promising application for next-generation lithium-ion batteries.
镍钴酸锂由于其高理论电容、低成本和良好的电化学活性等诸多优点,是一种很有前途的锂离子电池负极材料。在这项研究中,通过简便的沉淀法结合热处理工艺,合成了具有高比表面积(270.68 m·g)和优异电化学性能的介孔 NiCoO 双半球(3-5 μm)。所制备的 NiCoO 为纯相,可归属于具有典型尖晶石结构的面心立方。电化学测试表明,所制备的材料具有高比容量(在 100 mA·g 时为 910 mAh·g)、优异的循环稳定性(在 60 次循环后为 908 mAh·g)和显著的倍率性能(在 100 次循环后,在 400 mA·g 时为 585 mAh·g,在 800 mA·g 时为 415 mAh·g,在 1600 mA·g 时为 320 mAh·g,库仑效率几乎为 100%)。所制备的 NiCoO 具有优异的性能,主要是由于其独特的双半球结构,具有较大的比表面积,使材料有更多的机会与电解质接触,并有利于锂离子沿径向扩散到材料中,这为下一代锂离子电池的应用提供了广阔的前景。