Suppr超能文献

基于薄而灵活的碳纳米管的压力传感器,具有超宽的感应范围。

Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultrawide Sensing Range.

出版信息

ACS Sens. 2018 Jul 27;3(7):1276-1282. doi: 10.1021/acssensors.8b00378. Epub 2018 Jul 11.

Abstract

A scalable electrophoretic deposition (EPD) approach is used to create novel thin, flexible, and lightweight carbon nanotube-based textile pressure sensors. The pressure sensors can be produced using an extensive variety of natural and synthetic fibers. These piezoresistive sensors are sensitive to pressures ranging from the tactile range (<10 kPa), the body weight range (∼500 kPa), and very high pressures (∼40 MPa). The EPD technique enables the creation of a uniform carbon nanotube-based nanocomposite coating, in the range of 250-750 nm thick, of polyethyleneimine (PEI) functionalized carbon nanotubes on nonconductive fibers. In this work, nonwoven aramid fibers are coated by EPD onto a backing electrode followed by film formation onto the fibers creating a conductive network. The electrically conductive nanocomposite coating is firmly bonded to the fiber surface and shows piezoresistive electrical/mechanical coupling. The pressure sensor displays a large in-plane change in electrical conductivity with applied out-of-plane pressure. In-plane conductivity change results from fiber/fiber contact as well as the formation of a sponge-like piezoresistive nanocomposite "interphase" between the fibers. The resilience of the nanocomposite interphase enables sensing of high pressures without permanent changes to the sensor response, showing high repeatability.

摘要

一种可扩展的电泳沉积 (EPD) 方法被用于制造新型的、薄的、灵活的、重量轻的基于碳纳米管的纺织压力传感器。该压力传感器可以使用各种天然和合成纤维来生产。这些压阻式传感器对从触觉范围(<10kPa)、体重范围(500kPa)到非常高的压力(40MPa)的压力都很敏感。EPD 技术能够在非导电纤维上形成厚度在 250-750nm 之间的均匀的基于碳纳米管的纳米复合材料涂层,其中包含聚乙烯亚胺(PEI)功能化的碳纳米管。在这项工作中,无纺芳纶纤维通过 EPD 涂覆到背电极上,然后在纤维上形成薄膜,从而形成导电网络。导电纳米复合材料涂层牢固地结合在纤维表面上,并表现出压阻式电/机械耦合。压力传感器在施加平面外压力时显示出大的平面内电导率变化。平面内电导率的变化是由于纤维/纤维接触以及纤维之间形成海绵状压阻纳米复合材料“相间”所致。纳米复合材料相间的弹性使传感器能够在不改变传感器响应的情况下感应高压,具有高重复性。

相似文献

1
Thin and Flexible Carbon Nanotube-Based Pressure Sensors with Ultrawide Sensing Range.
ACS Sens. 2018 Jul 27;3(7):1276-1282. doi: 10.1021/acssensors.8b00378. Epub 2018 Jul 11.
3
Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity.
J Colloid Interface Sci. 2020 Mar 1;561:93-103. doi: 10.1016/j.jcis.2019.11.059. Epub 2019 Nov 17.
6
Hierarchical Network Enabled Flexible Textile Pressure Sensor with Ultrabroad Response Range and High-Temperature Resistance.
Adv Sci (Weinh). 2022 May;9(14):e2105738. doi: 10.1002/advs.202105738. Epub 2022 Mar 14.
7
Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection.
ACS Appl Mater Interfaces. 2020 Mar 25;12(12):14136-14144. doi: 10.1021/acsami.9b23110. Epub 2020 Mar 12.
8
Highly Stretchable Core-Sheath Fibers via Wet-Spinning for Wearable Strain Sensors.
ACS Appl Mater Interfaces. 2018 Feb 21;10(7):6624-6635. doi: 10.1021/acsami.7b18677. Epub 2018 Feb 12.
9
Flexible, Robust, and Durable Aramid Fiber/CNT Composite Paper as a Multifunctional Sensor for Wearable Applications.
ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5486-5497. doi: 10.1021/acsami.0c18161. Epub 2021 Jan 23.
10
Flexible Piezoresistive Tactile Sensor Based on Polymeric Nanocomposites with Grid-Type Microstructure.
Micromachines (Basel). 2021 Apr 16;12(4):452. doi: 10.3390/mi12040452.

引用本文的文献

1
Porous-Structure Flexible Muscle Sensor for Monitoring Muscle Function and Mass.
ACS Sens. 2025 Aug 22;10(8):5484-5494. doi: 10.1021/acssensors.4c03379. Epub 2025 Jul 24.
3
Microfluidic techniques for mechanical measurements of biological samples.
Biophys Rev (Melville). 2023 Jan 20;4(1):011303. doi: 10.1063/5.0130762. eCollection 2023 Mar.
4
Estimating ground reaction force with novel carbon nanotube-based textile insole pressure sensors.
Wearable Technol. 2023;4. doi: 10.1017/wtc.2023.2. Epub 2023 Mar 2.
5
Wearable Two-Dimensional Nanomaterial-Based Flexible Sensors for Blood Pressure Monitoring: A Review.
Nanomaterials (Basel). 2023 Feb 24;13(5):852. doi: 10.3390/nano13050852.
8
Sensing-range-tunable pressure sensors realized by self-patterned-spacer design and vertical CNT arrays embedded in PDMS.
RSC Adv. 2020 Sep 10;10(55):33558-33565. doi: 10.1039/d0ra06481e. eCollection 2020 Sep 7.

本文引用的文献

1
Highly Stretchable, Hysteresis-Free Ionic Liquid-Based Strain Sensor for Precise Human Motion Monitoring.
ACS Appl Mater Interfaces. 2017 Jan 18;9(2):1770-1780. doi: 10.1021/acsami.6b12415. Epub 2017 Jan 6.
2
Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer.
Small. 2016 Sep;12(36):5042-5048. doi: 10.1002/smll.201600760. Epub 2016 Jun 20.
3
A Stretchable Electronic Fabric Artificial Skin with Pressure-, Lateral Strain-, and Flexion-Sensitive Properties.
Adv Mater. 2016 Jan 27;28(4):722-8. doi: 10.1002/adma.201504239. Epub 2015 Nov 30.
4
Highly Sensitive and Multimodal All-Carbon Skin Sensors Capable of Simultaneously Detecting Tactile and Biological Stimuli.
Adv Mater. 2015 Jul 22;27(28):4178-85. doi: 10.1002/adma.201501408. Epub 2015 Jun 11.
5
Highly stable liquid metal-based pressure sensor integrated with a microfluidic channel.
Sensors (Basel). 2015 May 21;15(5):11823-35. doi: 10.3390/s150511823.
8
Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics.
Adv Mater. 2015 Apr 17;27(15):2433-9. doi: 10.1002/adma.201500009. Epub 2015 Feb 18.
10
A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection.
Nanoscale. 2014 Oct 21;6(20):11932-9. doi: 10.1039/c4nr03295k. Epub 2014 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验