Department of Microbiology and Astrobiology Program, University of Washington, Seattle, WA, 98195, USA.
Department of Crop Sciences, C. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Bioessays. 2018 Aug;40(8):e1800036. doi: 10.1002/bies.201800036. Epub 2018 Jun 26.
The origins and evolution of the Archaea, Bacteria, and Eukarya remain controversial. Phylogenomic-wide studies of molecular features that are evolutionarily conserved, such as protein structural domains, suggest Archaea is the first domain of life to diversify from a stem line of descent. This line embodies the last universal common ancestor of cellular life. Here, we propose that ancestors of Euryarchaeota co-evolved with those of Bacteria prior to the diversification of Eukarya. This co-evolutionary scenario is supported by comparative genomic and phylogenomic analyses of the distributions of fold families of domains in the proteomes of free-living organisms, which show horizontal gene recruitments and informational process homologies. It also benefits from the molecular study of cell physiologies responsible for membrane phospholipids, methanogenesis, methane oxidation, cell division, gas vesicles, and the cell wall. Our theory however challenges popular cell fusion and two-domain of life scenarios derived from sequence analysis, demanding phylogenetic reconciliation. Also see the video abstract here: https://youtu.be/9yVWn_Q9faY.
古菌、细菌和真核生物的起源和进化仍然存在争议。对进化上保守的分子特征(如蛋白质结构域)进行全基因组系统发育研究表明,古菌是从一个进化主干中最早多样化的生命领域。这条进化主干包含了细胞生命的最后一个普遍共同祖先。在这里,我们提出后生动物的祖先与细菌的祖先在真核生物多样化之前就已经共同进化了。这一共同进化的情景得到了对自由生活生物的蛋白质组中结构域折叠家族分布的比较基因组学和系统发育分析的支持,这些分析显示了水平基因转移和信息处理同源性。它还受益于对负责膜磷脂、甲烷生成、甲烷氧化、细胞分裂、气室和细胞壁的细胞生理学的分子研究。然而,我们的理论挑战了基于序列分析得出的流行的细胞融合和双生命领域的情景,需要进行系统发育协调。也可以在这里观看视频摘要:https://youtu.be/9yVWn_Q9faY。