Suppr超能文献

蛋白质折叠家族和蛋白质组的进化历史证实,古菌的祖先比其他超界的祖先更为古老。

The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms.

机构信息

Evolutionary Bioinformatics Laboratory, Department of Crop Science, University of Illinois, Urbana, IL 61801, USA.

出版信息

BMC Evol Biol. 2012 Jan 27;12:13. doi: 10.1186/1471-2148-12-13.

Abstract

BACKGROUND

The entire evolutionary history of life can be studied using myriad sequences generated by genomic research. This includes the appearance of the first cells and of superkingdoms Archaea, Bacteria, and Eukarya. However, the use of molecular sequence information for deep phylogenetic analyses is limited by mutational saturation, differential evolutionary rates, lack of sequence site independence, and other biological and technical constraints. In contrast, protein structures are evolutionary modules that are highly conserved and diverse enough to enable deep historical exploration.

RESULTS

Here we build phylogenies that describe the evolution of proteins and proteomes. These phylogenetic trees are derived from a genomic census of protein domains defined at the fold family (FF) level of structural classification. Phylogenomic trees of FF structures were reconstructed from genomic abundance levels of 2,397 FFs in 420 proteomes of free-living organisms. These trees defined timelines of domain appearance, with time spanning from the origin of proteins to the present. Timelines are divided into five different evolutionary phases according to patterns of sharing of FFs among superkingdoms: (1) a primordial protein world, (2) reductive evolution and the rise of Archaea, (3) the rise of Bacteria from the common ancestor of Bacteria and Eukarya and early development of the three superkingdoms, (4) the rise of Eukarya and widespread organismal diversification, and (5) eukaryal diversification. The relative ancestry of the FFs shows that reductive evolution by domain loss is dominant in the first three phases and is responsible for both the diversification of life from a universal cellular ancestor and the appearance of superkingdoms. On the other hand, domain gains are predominant in the last two phases and are responsible for organismal diversification, especially in Bacteria and Eukarya.

CONCLUSIONS

The evolution of functions that are associated with corresponding FFs along the timeline reveals that primordial metabolic domains evolved earlier than informational domains involved in translation and transcription, supporting the metabolism-first hypothesis rather than the RNA world scenario. In addition, phylogenomic trees of proteomes reconstructed from FFs appearing in each of the five phases of the protein world show that trees reconstructed from ancient domain structures were consistently rooted in archaeal lineages, supporting the proposal that the archaeal ancestor is more ancient than the ancestors of other superkingdoms.

摘要

背景

生命的整个进化历史都可以通过基因组研究产生的无数序列来研究。这包括第一个细胞和古菌、细菌和真核生物超界的出现。然而,分子序列信息在深度系统发育分析中的应用受到突变饱和、进化率差异、序列位点独立性缺乏和其他生物和技术限制的限制。相比之下,蛋白质结构是进化模块,它们高度保守且足够多样化,能够进行深入的历史探索。

结果

在这里,我们构建了描述蛋白质和蛋白质组进化的系统发育树。这些系统发育树是从结构分类的折叠家族(FF)水平定义的蛋白质结构域的基因组普查中得出的。从 420 个自由生活生物体的蛋白质组中 2397 个 FF 的基因组丰度水平重建了 FF 结构的系统发育树。这些树定义了域出现的时间表,时间范围从蛋白质的起源到现在。根据 FF 在超界之间共享的模式,时间表分为五个不同的进化阶段:(1)原始蛋白质世界,(2)简化进化和古菌的兴起,(3)细菌从细菌和真核生物的共同祖先中崛起以及三个超界的早期发展,(4)真核生物的兴起和广泛的生物多样性,以及(5)真核生物的多样化。FF 的相对祖先表明,在前三阶段,通过结构域丢失进行的简化进化是占主导地位的,这既是生命从普遍的细胞祖先多样化的原因,也是超界出现的原因。另一方面,在最后两个阶段,结构域获得占主导地位,是生物多样性的原因,特别是在细菌和真核生物中。

结论

沿着时间线与相应 FF 相关的功能进化表明,与翻译和转录相关的信息域比参与代谢的原始结构域进化得更早,这支持了代谢优先假说,而不是 RNA 世界场景。此外,从蛋白质世界五个阶段中的每一个阶段出现的 FF 重建蛋白质组的系统发育树表明,从古老结构域重建的树始终以古菌谱系为根,这支持了古菌祖先比其他超界祖先更古老的提议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c28/3306197/c621f4006e1f/1471-2148-12-13-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验