Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
Department of Chemical Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
ACS Nano. 2018 Jul 24;12(7):6504-6514. doi: 10.1021/acsnano.7b08777. Epub 2018 Jun 28.
The delivery of small interfering RNA (siRNA) remains a major hurdle for the clinical translation of RNA interference (RNAi) therapeutics. Because of its low valency and rigid nature, siRNA typically requires high excesses of cationic delivery materials to package it stably and deliver it to the cytoplasm of target cells, resulting in high toxicities and inefficient gene silencing in vivo. To address these challenges, we pair a polymeric form of siRNA, p-shRNA, with optimized biodegradable polycations to form stable complexes that induce far more potent gene silencing than with siRNA complexes. Furthermore, we unveil a set of design rules governing p-shRNA delivery, using degradable polycations containing hydrophobic and stabilizing polyethylene glycol domains that enable both stable condensation and efficient release inside cells. We demonstrate the therapeutic potential of this approach by silencing the oncogene STAT3 in a well-established B16F10 mouse melanoma model to significantly prolong survival. By blending nucleic acid engineering and polymer design, our system provides a potentially translatable platform for RNAi-based therapies.
小干扰 RNA(siRNA)的递送仍然是 RNA 干扰(RNAi)治疗物临床转化的主要障碍。由于其低化合价和刚性性质,siRNA 通常需要大量阳离子递送材料来稳定地包裹它并将其递送到靶细胞的细胞质中,导致体内高毒性和低效的基因沉默。为了解决这些挑战,我们将 siRNA 的聚合物形式 p-shRNA 与优化的可生物降解聚阳离子配对,形成稳定的复合物,诱导比 siRNA 复合物更强效的基因沉默。此外,我们揭示了一套控制 p-shRNA 递送的设计规则,使用含有疏水性和稳定聚乙二醇结构域的可降解聚阳离子,使稳定的缩合和在细胞内的有效释放成为可能。我们通过在成熟的 B16F10 小鼠黑色素瘤模型中沉默致癌基因 STAT3 来证明这种方法的治疗潜力,从而显著延长了存活时间。通过融合核酸工程和聚合物设计,我们的系统为基于 RNA 的治疗提供了一个潜在可转化的平台。