Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Biomacromolecules. 2024 May 13;25(5):2934-2952. doi: 10.1021/acs.biomac.4c00062. Epub 2024 Apr 30.
Localized short interfering RNA (siRNA) therapy has the potential to drive high-specificity molecular-level treatment of a variety of disease states. Unfortunately, effective siRNA therapy suffers from several barriers to its intracellular delivery. Thus, drug delivery systems that package and control the release of therapeutic siRNAs are necessary to overcome these obstacles to clinical translation. Layer-by-layer (LbL) electrostatic assembly of thin film coatings containing siRNA and protonatable, hydrolyzable poly(β-aminoester) (PBAE) polymers is one such drug delivery strategy. However, the impact of PBAE physicochemical properties on the transfection efficacy of siRNA released from LbL thin film coatings has not been systematically characterized. In this study, we investigate the siRNA transfection efficacy of four structurally similar PBAEs . We demonstrate that small changes in structure yield large changes in physicochemical properties, such as hydrophobicity, p, and amine chemical structure, driving differences in the interactions between PBAEs and siRNA in polyplexes and in LbL thin film coatings for wound dressings. In our polymer set, Poly3 forms the most stable interactions with siRNA ( = 0.298) to slow release kinetics and enhance transfection of reporter cells in both colloidal and thin film coating approaches. This is due to its unique physiochemical properties: high hydrophobicity (clog = 7.86), effective p closest to endosomal pH (p = 6.21), and high cooperativity in buffering ( = 7.2). These properties bestow Poly3 with enhanced endosomal buffering and escape properties. Taken together, this work elucidates the connections between small changes in polymer structure, emergent properties, and polyelectrolyte theory to better understand PBAE transfection efficacy.
局部短干扰 RNA(siRNA)疗法具有针对多种疾病状态进行高特异性分子水平治疗的潜力。不幸的是,有效的 siRNA 疗法在其细胞内递送上存在几个障碍。因此,需要包装和控制治疗性 siRNA 释放的药物输送系统来克服这些临床转化的障碍。包含 siRNA 和质子化、可水解的聚(β-氨基酯)(PBAE)聚合物的薄膜涂层的层层(LbL)静电组装就是这样一种药物输送策略。然而,PBAE 的物理化学性质对 LbL 薄膜涂层中释放的 siRNA 的转染效率的影响尚未得到系统的表征。在这项研究中,我们研究了四种结构相似的 PBAE 的 siRNA 转染效率。我们证明,结构上的微小变化会导致物理化学性质发生巨大变化,例如疏水性、p 和胺化学结构,从而导致 PBAE 与聚集体中和伤口敷料 LbL 薄膜涂层中的 siRNA 相互作用的差异。在我们的聚合物组中,Poly3 与 siRNA 形成最稳定的相互作用( = 0.298),以减缓释放动力学并增强报告细胞在胶体和薄膜涂层方法中的转染。这是由于其独特的物理化学性质:高疏水性( clog = 7.86)、最接近内体 pH 的有效 p(p = 6.21)和缓冲的高协同性( = 7.2)。这些特性赋予 Poly3 增强的内体缓冲和逃逸特性。总之,这项工作阐明了聚合物结构、新兴特性和聚电解质理论之间的微小变化之间的联系,以更好地理解 PBAE 的转染效率。