Suppr超能文献

一组用于分析医疗支出面板数据的边缘化两部分随机效应模型:新型农村合作医疗制度对中国医疗支出的影响。

A collection of marginalized two-part random-effects models for analyzing medical expenditure panel data: Impact of the New Cooperative Medical Scheme on healthcare expenditures in China.

机构信息

1 Department of Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA, USA.

2 Department of Mathematics, Harbin Institute of Technology, Harbin, P.R. China.

出版信息

Stat Methods Med Res. 2019 Aug;28(8):2494-2523. doi: 10.1177/0962280218784725. Epub 2018 Jun 26.

Abstract

Marginalized two-part random-effects generalized Gamma models have been proposed for analyzing medical expenditure panel data with excessive zeros. While these models provide marginal inference on expected healthcare expenditures, the usual unilateral specification of heteroscedastic variance on one of the two shape parameters for the generalized Gamma distribution in these models fails to encompass important special cases within the generalized gamma modeling framework. In this article, we construct marginalized two-part random-effects models that employ the log-normal, log-skew-normal, generalized Gamma, Weibull, Gamma, and inverse Gamma distributions to delineate the spectrum of nonzero healthcare expenditures in the second part of the models. These marginalized models supply additional choices for analyzing healthcare expenditure panel data with excessive zeros. We review the concepts of marginal effect and incremental effect, and summarize how these effects are estimated. For studies whose primary goal is to make inference on marginal effect or incremental effect of an independent variable with respect to healthcare expenditures, we advocate empirical mean square error criterion and information criteria to choose among candidate models. Then, we use the proposed models in an empirical analysis to examine the impact of the New Cooperative Medical Scheme on healthcare expenditures among older adults in rural China.

摘要

边缘化两部分随机效应广义伽马模型已被提出,用于分析医疗支出面板数据中存在过多的零值。虽然这些模型提供了对预期医疗支出的边际推断,但在这些模型中,广义伽马分布的两个形状参数之一的异方差通常是单边指定的,这使得广义伽马建模框架内的一些重要特殊情况无法涵盖。在本文中,我们构建了边缘化两部分随机效应模型,这些模型采用对数正态分布、对数偏态正态分布、广义伽马分布、威布尔分布、伽马分布和逆伽马分布来描绘模型第二部分中非零医疗支出的范围。这些边缘化模型为分析存在过多零值的医疗支出面板数据提供了更多选择。我们回顾了边际效应和增量效应的概念,并总结了如何估计这些效应。对于主要目的是对医疗支出的自变量的边际效应或增量效应进行推断的研究,我们提倡使用经验均方误差准则和信息准则来选择候选模型。然后,我们在实证分析中使用所提出的模型来检验中国农村新型合作医疗制度对老年人医疗支出的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验