From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892.
From the Cell Biology and Physiology Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
J Biol Chem. 2018 Aug 10;293(32):12525-12534. doi: 10.1074/jbc.RA118.003471. Epub 2018 Jun 26.
Adaptations and responses to stress conditions are fundamental processes that all cells must accomplish to maintain or restore cellular homeostasis. Cells have a plethora of response pathways to mitigate the effect of different environmental stressors. The transcriptional regulators transcription factor EB (TFEB) and transcription factor binding to IGHM enhancer 3 (TFE3) play a key role in the control of these stress pathways. Therefore, understanding their regulation under different stress conditions is of great interest. Here, using a range of human and murine cells, we show that TFEB and TFE3 are activated upon induction of acute oxidative stress by sodium arsenite via an mTOR complex 1 (mTORC1)-independent process. We found that the mechanism of arsenite-stimulated TFEB and TFE3 activation instead involves protein phosphatase 2A (PP2A)-mediated dephosphorylation at Ser-211 and Ser-321, respectively. Depletion of either the catalytic (PPP2CA+B) or regulatory (PPP2R2A/B55α) subunits of PP2A, as well as PP2A inactivation with the specific inhibitor okadaic acid, abolished TFEB and TFE3 activation in response to sodium arsenite. Conversely, PP2A activation by ceramide or the sphingosine-like compound FTY720 was sufficient to induce TFE3 nuclear translocation. MS analysis revealed that PP2A dephosphorylates TFEB at several residues, including Ser-109, Ser-114, Ser-122, and Ser-211, thus facilitating TFEB activation. Overall, this work identifies a critical mechanism that activates TFEB and TFE3 without turning off mTORC1 activity. We propose that this mechanism may enable some cell types such as immune or cancer cells that require simultaneous TFEB/TFE3 and mTORC1 signaling to survive and achieve robust cell growth in stressful environments.
适应和应对应激条件是所有细胞必须完成的基本过程,以维持或恢复细胞内稳态。细胞有大量的反应途径来减轻不同环境应激源的影响。转录因子 EB(TFEB)和转录因子结合到 IGHM 增强子 3(TFE3)的转录因子在这些应激途径的控制中发挥关键作用。因此,了解它们在不同应激条件下的调节机制非常重要。在这里,我们使用一系列人类和鼠类细胞,表明 TFEB 和 TFE3 在受到亚砷酸钠诱导的急性氧化应激时被激活,这是一个不依赖于 mTOR 复合物 1(mTORC1)的过程。我们发现,砷酸盐刺激 TFEB 和 TFE3 激活的机制涉及蛋白磷酸酶 2A(PP2A)介导的分别在 Ser-211 和 Ser-321 处的去磷酸化。PP2A 的催化(PPP2CA+B)或调节(PPP2R2A/B55α)亚基的消耗,以及用特异性抑制剂 okadaic acid 使 PP2A 失活,均消除了亚砷酸钠对 TFEB 和 TFE3 激活的作用。相反,用神经酰胺或类似鞘氨醇的化合物 FTY720 激活 PP2A 足以诱导 TFE3 核转位。MS 分析表明,PP2A 在几个残基上使 TFEB 去磷酸化,包括 Ser-109、Ser-114、Ser-122 和 Ser-211,从而促进 TFEB 激活。总的来说,这项工作确定了一种激活 TFEB 和 TFE3 而不关闭 mTORC1 活性的关键机制。我们提出,这种机制可能使一些细胞类型,如需要同时进行 TFEB/TFE3 和 mTORC1 信号传导以在应激环境中存活和实现强大细胞生长的免疫或癌细胞,能够存活并实现强大的细胞生长。