Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.
Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
Clin Cancer Res. 2018 Oct 1;24(19):4854-4864. doi: 10.1158/1078-0432.CCR-17-3438. Epub 2018 Jun 26.
Despite the challenge to directly target mutant KRAS due to its high GTP affinity, some agents are under development against downstream signaling pathways, such as MEK inhibitors. However, it remains controversial whether MEK inhibitors can boost current chemotherapy in -mutant lung tumors in clinic. Considering the genomic heterogeneity among patients with lung cancer, it is valuable to test potential therapeutics in mutation-driven mouse models. We first compared the pERK1/2 level in lung cancer samples with different substitutions and generated a new genetically engineered mouse model whose tumor was driven by , the most common mutation in lung cancer. Next, we evaluated the efficacy of selumetinib or its combination with chemotherapy, in KRAS tumors compared with KRAS tumors. Moreover, we generated KRAS/p53 model to explore the role of a dominant negative p53 mutation detected in patients in responsiveness to MEK inhibition. We determined higher pERK1/2 in KRAS lung tumors compared with KRAS Using mouse models, we further identified that KRAS tumors are significantly more sensitive to selumetinib compared with Kras tumors. MEK inhibition significantly increased chemotherapeutic efficacy and progression-free survival of KRAS mice. Interestingly, p53 co-mutation rendered KRAS lung tumors less sensitive to combination treatment with selumetinib and chemotherapy. Our data demonstrate that unique mutations and concurrent mutations in tumor-suppressor genes are important factors for lung tumor responses to MEK inhibitor. Our preclinical study supports further clinical evaluation of combined MEK inhibition and chemotherapy for lung cancer patients harboring and wild-type p53 status. .
尽管由于 KRAS 突变体的高 GTP 亲和力,直接靶向 KRAS 突变体具有挑战性,但一些针对下游信号通路的药物正在开发中,如 MEK 抑制剂。然而,MEK 抑制剂是否能在临床上增强突变体肺肿瘤的当前化疗仍存在争议。考虑到肺癌患者之间的基因组异质性,在驱动基因突变为的小鼠模型中测试潜在的治疗方法是很有价值的。我们首先比较了具有不同 KRAS 突变的肺癌样本中的 pERK1/2 水平,并构建了一个新的遗传工程小鼠模型,其肿瘤由最常见的肺癌 KRAS 突变驱动。接下来,我们评估了 selumetinib 或其与化疗联合治疗在 KRAS 肿瘤与 KRAS 肿瘤中的疗效。此外,我们还构建了 KRAS/p53 模型,以探索在对 MEK 抑制反应性中检测到的显性负 p53 突变的患者中的作用。我们通过小鼠模型确定了 KRAS 肺肿瘤中的 pERK1/2 水平明显高于 KRAS 肺肿瘤。我们进一步确定,与 Kras 肿瘤相比,KRAS 肿瘤对 selumetinib 更为敏感。MEK 抑制显著提高了 KRAS 小鼠的化疗疗效和无进展生存期。有趣的是,p53 共突变使 KRAS 肺肿瘤对 selumetinib 与化疗联合治疗的敏感性降低。我们的数据表明,独特的 KRAS 突变和肿瘤抑制基因的并发突变是肺肿瘤对 MEK 抑制剂反应的重要因素。我们的临床前研究支持对携带和野生型 p53 状态的肺癌患者进行 MEK 抑制联合化疗的进一步临床评估。