Seidel Katja, Kühnert Joana, Adrian Lorenz
Department Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
Chair of Geobiotechnology, Technische Universität Berlin, Berlin, Germany.
Front Microbiol. 2018 Jun 12;9:1130. doi: 10.3389/fmicb.2018.01130. eCollection 2018.
strain CBDB1 is a slow growing strictly anaerobic microorganism dependent on halogenated compounds as terminal electron acceptor for anaerobic respiration. Indications have been described that the membrane-bound proteinaceous organohalide respiration complex of strain CBDB1 is functional without quinone-mediated electron transfer. We here study this multi-subunit protein complex in depth in regard to participating protein subunits and interactions between the subunits using blue native gel electrophoresis coupled to mass spectrometric label-free protein quantification. Applying three different solubilization modes to detach the respiration complex from the membrane we describe different solubilization snapshots of the organohalide respiration complex. The results demonstrate the existence of a two-subunit hydrogenase module loosely binding to the rest of the complex, tight binding of the subunit HupX to OmeA and OmeB, predicted to be the two subunits of a molybdopterin-binding redox subcomplex, to form a second module, and the presence of two distinct reductive dehalogenase module variants with different sizes. In our data we obtained biochemical evidence for the specificity between a reductive dehalogenase RdhA (CbdbA80) and its membrane anchor protein RdhB (CbdbB3). We also observed weak interactions between the reductive dehalogenase and the hydrogenase module suggesting a not yet recognized contact surface between these two modules. Especially an interaction between the two integral membrane subunits OmeB and RdhB seems to promote the integrity of the complex. With the different solubilization strengths we observe successive disintegration of the complex into its subunits. The observed architecture would allow the association of different reductive dehalogenase modules RdhA/RdhB with the other two protein complex modules when the strain is growing on different electron acceptors. In the search for other respiratory complexes in strain CBDB1 the remarkable result is not the detection of a standard ATPase but the absence of any other abundant membrane complex although an 11-subunit version of complex I (Nuo) is encoded in the genome.
菌株CBDB1是一种生长缓慢的严格厌氧微生物,它依赖卤代化合物作为厌氧呼吸的末端电子受体。有迹象表明,菌株CBDB1的膜结合蛋白质类有机卤化物呼吸复合体在没有醌介导的电子传递的情况下也能发挥功能。我们在此使用蓝色非变性凝胶电泳结合无标记蛋白质定量质谱法,深入研究这种多亚基蛋白质复合体中参与的蛋白质亚基以及亚基之间的相互作用。通过应用三种不同的增溶模式将呼吸复合体从膜上分离,我们描述了有机卤化物呼吸复合体的不同增溶状态。结果表明存在一个由两个亚基组成的氢化酶模块,它与复合体的其余部分松散结合;亚基HupX与预计为钼蝶呤结合氧化还原亚复合体的两个亚基OmeA和OmeB紧密结合,形成第二个模块;还存在两种不同大小的还原脱卤酶模块变体。在我们的数据中,我们获得了还原脱卤酶RdhA(CbdbA80)与其膜锚定蛋白RdhB(CbdbB3)之间特异性的生化证据。我们还观察到还原脱卤酶与氢化酶模块之间存在弱相互作用,这表明这两个模块之间存在尚未被认识的接触表面。特别是两个整合膜亚基OmeB和RdhB之间的相互作用似乎促进了复合体的完整性。随着增溶强度的不同,我们观察到复合体逐渐分解为其亚基。观察到的结构将允许当菌株在不同电子受体上生长时,不同的还原脱卤酶模块RdhA/RdhB与其他两个蛋白质复合体模块结合。在寻找菌株CBDB1中的其他呼吸复合体时,显著的结果不是检测到标准的ATP酶,而是尽管基因组中编码了一个11亚基版本(Nuo)的复合体I,但没有检测到任何其他丰富的膜复合体。