Suppr超能文献

一种估算化学传感器阵列分辨能力的实用方法:在特征选择中的应用。

A Practical Method to Estimate the Resolving Power of a Chemical Sensor Array: Application to Feature Selection.

作者信息

Fernandez Luis, Yan Jia, Fonollosa Jordi, Burgués Javier, Gutierrez Agustin, Marco Santiago

机构信息

Department of Electronics and Biomedical Engineering, Universitat de Barcelona, Barcelona, Spain.

Signal and information processing for sensing systems, Institute for Bioengineering of Catalonia, Barcelona, Spain.

出版信息

Front Chem. 2018 Jun 12;6:209. doi: 10.3389/fchem.2018.00209. eCollection 2018.

Abstract

A methodology to calculate analytical figures of merit is not well established for detection systems that are based on sensor arrays with low sensor selectivity. In this work, we present a practical approach to estimate the Resolving Power of a sensory system, considering non-linear sensors and heteroscedastic sensor noise. We use the definition introduced by Shannon in the field of communication theory to quantify the number of symbols in a noisy environment, and its version adapted by Gardner and Barlett for chemical sensor systems. Our method combines dimensionality reduction and the use of algorithms to compute the convex hull of the empirical data to estimate the data volume in the sensor response space. We validate our methodology with synthetic data and with actual data captured with temperature-modulated MOX gas sensors. Unlike other methodologies, our method does not require the intrinsic dimensionality of the sensor response to be smaller than the dimensionality of the input space. Moreover, our method circumvents the problem to obtain the sensitivity matrix, which usually is not known. Hence, our method is able to successfully compute the Resolving Power of actual chemical sensor arrays. We provide a relevant figure of merit, and a methodology to calculate it, that was missing in the literature to benchmark broad-response gas sensor arrays.

摘要

对于基于传感器选择性较低的传感器阵列的检测系统,计算分析品质因数的方法尚未得到很好的确立。在这项工作中,我们提出了一种实用的方法来估计传感系统的分辨能力,同时考虑了非线性传感器和异方差传感器噪声。我们使用香农在通信理论领域引入的定义来量化噪声环境中的符号数量,以及加德纳和巴特利特针对化学传感器系统改编的版本。我们的方法结合了降维和使用算法来计算经验数据的凸包,以估计传感器响应空间中的数据量。我们用合成数据和用温度调制的金属氧化物半导体(MOX)气体传感器捕获的实际数据验证了我们的方法。与其他方法不同,我们的方法不要求传感器响应的固有维度小于输入空间的维度。此外,我们的方法规避了获取通常未知的灵敏度矩阵的问题。因此,我们的方法能够成功计算实际化学传感器阵列的分辨能力。我们提供了一个相关的品质因数以及计算它的方法,这在文献中是缺失的,用于对宽响应气体传感器阵列进行基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f022/6005889/05a85920c7f4/fchem-06-00209-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验