Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland.
Mikrochim Acta. 2018 Nov 28;185(12):563. doi: 10.1007/s00604-018-3104-z.
Gas sensor arrays often lack discrimination power to different analytes and robustness to interferants, limiting their success outside of research laboratories. This is primarily due to the widely sensitive (thus weakly-selective) nature of the constituent sensors. Here, the effect of orthogonality on array accuracy and precision by selective sensor design is investigated. Therefore, arrays of (2-5) selective and non-selective sensors are formed by systematically altering array size and composition. Their performance is evaluated with 60 random combinations of ammonia, acetone and ethanol at ppb to low ppm concentrations. Best analyte predictions with high coefficients of determination (R) of 0.96 for ammonia, 0.99 for acetone and 0.88 for ethanol are obtained with an array featuring high degree of orthogonality. This is achieved by using distinctly selective sensors (Si:MoO for ammonia and Si:WO for acetone together with Si:SnO) that improve discrimination power and stability of the regression coefficients. On the other hand, arrays with collinear sensors (Pd:SnO, Pt:SnO and Si:SnO) hardly improve gas predictions having R of 0.01, 0.86 and 0.28 for ammonia, acetone and ethanol, respectively. Sometimes they even exhibited lower coefficient of determination than single sensors as a Si:MoO sensor alone predicts ammonia better with a R of 0.68. Graphical abstract Conventional arrays (red) with weakly-selective sensors span a significantly smaller volume in the analyte space than arrays containing distinctly-selective sensors (orthogonal array, green). Orthogonal arrays feature better accuracy and precision than conventional arrays in mixtures of ammonia, acetone and ethanol.
气体传感器阵列通常缺乏对不同分析物的区分能力和对干扰物的鲁棒性,这限制了它们在研究实验室之外的成功应用。这主要是由于构成传感器的广泛敏感性(因此选择性弱)。在这里,通过选择性传感器设计研究了正交性对阵列准确性和精度的影响。因此,通过系统地改变阵列大小和组成,形成了(2-5)个选择性和非选择性传感器的阵列。它们的性能通过在 ppb 至低 ppm 浓度下对氨、丙酮和乙醇的 60 个随机组合进行评估。使用具有高度正交性的阵列可以获得最佳的分析物预测,氨的决定系数(R)高达 0.96,丙酮为 0.99,乙醇为 0.88。这是通过使用明显选择性的传感器(用于氨的 Si:MoO 和用于丙酮的 Si:WO 以及 Si:SnO)实现的,这些传感器提高了区分能力和回归系数的稳定性。另一方面,具有共线性传感器(Pd:SnO、Pt:SnO 和 Si:SnO)的阵列几乎不能改善气体预测,氨、丙酮和乙醇的 R 值分别为 0.01、0.86 和 0.28。有时,它们甚至表现出比单个传感器更低的决定系数,因为 Si:MoO 传感器单独预测氨的 R 值为 0.68。
图形摘要 传统的具有弱选择性传感器的阵列(红色)在分析物空间中占据的范围明显小于包含明显选择性传感器的阵列(正交阵列,绿色)。在氨、丙酮和乙醇的混合物中,正交阵列比传统阵列具有更好的准确性和精度。