Suppr超能文献

T 细胞受体谱分析可预测 HBV 相关肝细胞癌的预后。

T cell receptor repertoire profiling predicts the prognosis of HBV-associated hepatocellular carcinoma.

机构信息

Clinical Research Institute, Foshan Hospital, Sun Yat-sen University, Foshan, China.

Department of Hepatobiliary Surgery, Foshan Hospital, Sun Yat-sen University, Foshan, China.

出版信息

Cancer Med. 2018 Aug;7(8):3755-3762. doi: 10.1002/cam4.1610. Epub 2018 Jun 26.

Abstract

Tumor-infiltrating T cell repertoire has been demonstrated to be closely associated with anti-tumor immune response. However, the relationship between T cell repertoire in tumor tissue and prognosis has never been reported in Hepatocellular carcinoma (HCC). We performed the high-throughput T cell receptor (TCR) sequencing to systematically characterize the infiltrating T cell repertoires of tumor and matched adjacent normal tissues from 23 HBV-associated HCC patients. Significant differences on usage frequencies of some Vβ, Jβ, and Vβ-Jβ paired genes have been found between the 2 groups of tissue samples, but no significant difference of TCR repertoire diversity could be found. Interestingly, the similarity of TCR repertoires between paired samples or the TNM stage alone could not be helpful to evaluate the prognosis of patients very well, but their combination could serve as an efficient prognostic indicator that the patients with early stage and high similarity showed a better prognosis. This is the first attempt to assess the potential value of TCR repertoire in HCC prognosis, and our findings could serve as a complement for the characterization of TCR repertoire in HCC.

摘要

肿瘤浸润 T 细胞 repertoire 与抗肿瘤免疫反应密切相关。然而,在肝细胞癌(HCC)中,肿瘤组织中 T 细胞 repertoire 与预后之间的关系从未有报道。我们对 23 例 HBV 相关 HCC 患者的肿瘤和配对的相邻正常组织进行了高通量 T 细胞受体(TCR)测序,以系统地描述浸润 T 细胞 repertoire。在这两组组织样本中,发现了一些 Vβ、Jβ 和 Vβ-Jβ 配对基因的使用频率存在显著差异,但 TCR repertoire 多样性没有显著差异。有趣的是,配对样本之间或 TNM 分期本身的 TCR repertoire 相似性并不能很好地评估患者的预后,但它们的组合可以作为一个有效的预后指标,早期和高度相似的患者预后较好。这是首次尝试评估 TCR repertoire 在 HCC 预后中的潜在价值,我们的发现可以作为 HCC 中 TCR repertoire 特征描述的补充。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f55b/6089190/880c32b1feb3/CAM4-7-3755-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验