Theoretical and Physical Chemistry Institute , National Hellenic Research Foundation , 48 Vassileos Constantinou Avenue , 11635 Athens , Greece.
Jülich Centre for Neutron Science (JCNS) at Heinz Maier Leibnitz-Zentrum (MLZ) , Forschungszentrum Jülich GmbH , Lichtenbergstrasse 1 , 85748 Garching , Germany.
J Phys Chem B. 2018 Jul 26;122(29):7426-7435. doi: 10.1021/acs.jpcb.8b04364. Epub 2018 Jul 12.
We investigate the formation of hybrid polyelectrolyte/protein nanoparticles by associations between aggregates of partially hydrolyzed poly(2-phenyl-2-oxazoline) (HPPhOx) and bovine serum albumin (BSA) in aqueous solutions. Light scattering experiments show that at conditions of low salt, BSA creates interaggregate bridges and increases the size of the HPPhOx nanoparticles. At high salt contents, breaking of aggregates leads to well-defined nanoparticles. The interior of the formed nanoparticles is probed by small-angle neutron scattering. At low salt, diffuse arrangements are observed, whereas at high salt concentration, scattering is dominated by well-defined hydrophobic domains enhanced by the incorporation of BSA. This system shows that the combination of hydrophobic and electrostatic interactions in random-amphiphilic-polyelectrolyte/protein complexes can be used to determine the properties of self-assembled hybrid multifunctional nanoparticles.
我们通过部分水解的聚(2-苯基-2-恶唑啉)(HPPhOx)和牛血清白蛋白(BSA)在水溶液中的聚集物之间的缔合,研究了杂化聚电解质/蛋白质纳米粒子的形成。光散射实验表明,在低盐条件下,BSA 会形成聚集体间桥联,从而增加 HPPhOx 纳米粒子的尺寸。在高盐含量下,聚集物的断裂会导致形成具有良好定义的纳米粒子。通过小角中子散射来探测形成的纳米粒子的内部。在低盐条件下,观察到弥散排列,而在高盐浓度下,散射主要由通过结合 BSA 增强的明确的疏水性域决定。该体系表明,在无规两亲聚合物/蛋白质复合物中,疏水相互作用和静电相互作用的结合可用于确定自组装杂化多功能纳米粒子的性质。