Suppr超能文献

利用无监督机器学习技术对胸部 CT 中的周围支气管进行识别。

Peripheral bronchial identification on chest CT using unsupervised machine learning.

机构信息

Department of Radiology, Prince of Wales Hospital, Sydney, 2031, Australia.

School of Computer Science and Engineering, University of New South Wales, Sydney, 2052, Australia.

出版信息

Int J Comput Assist Radiol Surg. 2018 Sep;13(9):1379-1395. doi: 10.1007/s11548-018-1805-8. Epub 2018 Jun 13.

Abstract

PURPOSE

To automatically identify small- to medium-diameter bronchial segments distributed throughout the lungs.

METHODS

We segment the peripheral pulmonary vascular tree and construct cross-sectional images perpendicular to the lung vasculature. The bronchi running with pulmonary arteries appear as concentric rings, and potential center points that lie within the bronchi are identified by looking for circles (using the circular Hough transform) and rings (using a novel variable ring filter). The number of candidate bronchial center points are further reduced by using agglomerative hierarchical clustering applied to the points represented with 18 features pertaining to their 3D position, orientation and appearance of the surrounding cross-sectional image. Resulting clusters corresponded to bronchial segments. Parameters of the algorithm are varied and applied to two experimental data sets to find the best values for bronchial identification. The optimized algorithm was then applied to a further 21 CT studies obtained using two different CT vendors.

RESULTS

The parameters that result in the most number of true positive bronchial center points with > 95% precision are a tolerance of 0.15 for the hierarchical clustering algorithm and a threshold of 75 HU with 10 spokes for the ring filter. Overall, the performance on all 21 test data sets from CT scans from both vendors demonstrates a mean number of 563 bronchial points detected per CT study, with a mean precision of 96%. The detected points across this group of test data sets are relatively uniformly distributed spatially with respect to spherical coordinates with the origin at the center of the test imaging data sets.

CONCLUSION

We have constructed a robust algorithm for automatic detection of small- to medium-diameter bronchial segments throughout the lungs using a combination of knowledge-based approaches and unsupervised machine learning. It appears robust over two different CT vendors with similar acquisition parameters.

摘要

目的

自动识别分布在肺部的小至中等直径的支气管段。

方法

我们对肺周围血管树进行分割,并构建与肺血管垂直的横截面图像。与肺动脉一起运行的支气管呈同心环,通过寻找圆形(使用圆形霍夫变换)和环(使用新的可变环滤波器)来识别位于支气管内的潜在中心点。通过应用于用与 3D 位置、方向和周围横截面图像外观相关的 18 个特征表示的点的凝聚层次聚类,进一步减少候选支气管中心点的数量。得到的聚类对应于支气管段。改变算法的参数并将其应用于两个实验数据集,以找到支气管识别的最佳值。然后将优化后的算法应用于使用两个不同 CT 供应商获得的另外 21 个 CT 研究。

结果

导致具有>95%精度的最多真阳性支气管中心点数量的参数是层次聚类算法的容差为 0.15,以及环滤波器的 75 HU 阈值和 10 个辐条。总体而言,来自两个供应商的 CT 扫描的所有 21 个测试数据集的性能表明,每个 CT 研究平均检测到 563 个支气管点,平均精度为 96%。在这组测试数据集中,检测到的点在以测试成像数据集的中心为原点的球坐标中具有相对均匀的空间分布。

结论

我们使用基于知识的方法和无监督机器学习的组合构建了一种用于自动检测肺部小至中等直径支气管段的强大算法。它在具有相似采集参数的两个不同 CT 供应商中表现出较强的稳健性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验