Suppr超能文献

基于局部强度滤波器和机器学习技术的三维胸部CT容积气道树自动分割

Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.

作者信息

Meng Qier, Kitasaka Takayuki, Nimura Yukitaka, Oda Masahiro, Ueno Junji, Mori Kensaku

机构信息

Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan.

Graduate School of Information Science, Aichi Institute of Technology, 1247 Yachigusa, Yagusa-cho, Toyota, Aichi, Japan.

出版信息

Int J Comput Assist Radiol Surg. 2017 Feb;12(2):245-261. doi: 10.1007/s11548-016-1492-2. Epub 2016 Oct 28.

Abstract

PURPOSE

Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree.

METHODS

This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree.

RESULTS

A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate.

CONCLUSION

A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.

摘要

目的

气道分割在分析胸部计算机断层扫描(CT)容积以进行计算机辅助肺癌检测、肺气肿诊断以及术前和术中支气管镜导航方面发挥着重要作用。然而,从CT容积中获取完整的三维气道树结构是一项颇具挑战性的任务。一些研究人员提出了基本基于区域生长和机器学习技术的自动气道分割算法。然而,这些方法无法检测到外周支气管分支,从而导致大量遗漏。本文提出了一种用于更准确提取复杂气道树的新方法。

方法

所提出的分割方法由三个步骤组成。首先,利用黑塞分析来增强CT容积中的管状结构;然后,采用自适应多尺度腔增强滤波器来检测不同半径的腔状结构。在第二步中,将利用支持向量机学习从前一步获得的结果中去除假阳性(FP)区域。最后,使用图割算法对候选体素进行细化,以形成完整的气道树。

结果

使用包含50个标准剂量胸部CT容积的测试数据集来评估我们提出的方法。平均提取率约为79.1%,假阳性率显著降低。

结论

开发了一种基于局部强度结构和机器学习技术的气道分割新方法。该方法在肺部计算机辅助诊断系统和支气管镜引导系统中被证明对气道分割是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验