Suppr超能文献

基于脑影像的自闭症谱系障碍机器学习:方法与应用。

Brain imaging-based machine learning in autism spectrum disorder: methods and applications.

机构信息

Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China 100190; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China 100049.

Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA 30303.

出版信息

J Neurosci Methods. 2021 Sep 1;361:109271. doi: 10.1016/j.jneumeth.2021.109271. Epub 2021 Jun 24.

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental condition with early childhood onset and high heterogeneity. As the pathogenesis is still elusive, ASD diagnosis is comprised of a constellation of behavioral symptoms. Non-invasive brain imaging techniques, such as magnetic resonance imaging (MRI), provide a valuable objective measurement of the brain. Many efforts have been devoted to developing imaging-based diagnostic tools for ASD based on machine learning (ML) technologies. In this survey, we review recent advances that utilize machine learning approaches to classify individuals with and without ASD. First, we provide a brief overview of neuroimaging-based ASD classification studies, including the analysis of publications and general classification pipeline. Next, representative studies are highlighted and discussed in detail regarding different imaging modalities, methods and sample sizes. Finally, we highlight several common challenges and provide recommendations on future directions. In summary, identifying discriminative biomarkers for ASD diagnosis is challenging, and further establishing more comprehensive datasets and dissecting the individual and group heterogeneity will be critical to achieve better ADS diagnosis performance. Machine learning methods will continue to be developed and are poised to help advance the field in this regard.

摘要

自闭症谱系障碍(ASD)是一种神经发育障碍,发病于儿童早期,具有高度异质性。由于发病机制仍不清楚,ASD 的诊断包括一系列行为症状。非侵入性脑成像技术,如磁共振成像(MRI),为大脑提供了有价值的客观测量。许多人致力于开发基于机器学习(ML)技术的 ASD 成像诊断工具。在本综述中,我们回顾了利用机器学习方法对 ASD 患者和非 ASD 患者进行分类的最新进展。首先,我们简要概述了基于神经影像学的 ASD 分类研究,包括出版物分析和一般分类流程。接下来,重点介绍了具有代表性的研究,并详细讨论了不同的成像方式、方法和样本量。最后,我们强调了几个常见的挑战,并就未来的方向提出了建议。总之,识别 ASD 诊断的有区分性生物标志物具有挑战性,进一步建立更全面的数据集并剖析个体和群体异质性对于实现更好的 ASD 诊断性能至关重要。机器学习方法将继续得到开发,并有望在这方面推动该领域的发展。

相似文献

引用本文的文献

8
Performance reserves in brain-imaging-based phenotype prediction.基于脑影像的表型预测中的性能储备。
Cell Rep. 2024 Jan 23;43(1):113597. doi: 10.1016/j.celrep.2023.113597. Epub 2023 Dec 29.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验