Suppr超能文献

与用于自闭症谱系障碍识别个体的病理生物标志物相关的功能连接组改变模式。

The Altered Pattern of the Functional Connectome Related to Pathological Biomarkers in Individuals for Autism Spectrum Disorder Identification.

作者信息

Peng Liling, Liu Xiao, Ma Di, Chen Xiaofeng, Xu Xiaowen, Gao Xin

机构信息

Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China.

School of Business Administration, José Rizal University, Mandaluyong, Philippines.

出版信息

Front Neurosci. 2022 May 6;16:913377. doi: 10.3389/fnins.2022.913377. eCollection 2022.

Abstract

OBJECTIVE

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder characterized by the development of multiple symptoms, with incidences rapidly increasing worldwide. An important step in the early diagnosis of ASD is to identify informative biomarkers. Currently, the use of functional brain network (FBN) is deemed important for extracting data on brain imaging biomarkers. Unfortunately, most existing studies have reported the utilization of the information from the connection to train the classifier; such an approach ignores the topological information and, in turn, limits its performance. Thus, effective utilization of the FBN provides insights for improving the diagnostic performance.

METHODS

We propose the combination of the information derived from both FBN and its corresponding graph theory measurements to identify and distinguish ASD from normal controls (NCs). Specifically, a multi-kernel support vector machine (MK-SVM) was used to combine multiple types of information.

RESULTS

The experimental results illustrate that the combination of information from multiple connectome features (i.e., functional connections and graph measurements) can provide a superior identification performance with an area under the receiver operating characteristic curve (ROC) of 0.9191 and an accuracy of 82.60%. Furthermore, the graph theoretical analysis illustrates that the significant nodal graph measurements and consensus connections exists mostly in the salience network (SN), default mode network (DMN), attention network, frontoparietal network, and social network.

CONCLUSION

This work provides insights into potential neuroimaging biomarkers that may be used for the diagnosis of ASD and offers a new perspective for the exploration of the brain pathophysiology of ASD through machine learning.

摘要

目的

自闭症谱系障碍(ASD)是一种常见的神经发育障碍,其特征是出现多种症状,在全球范围内发病率迅速上升。ASD早期诊断的一个重要步骤是识别有信息量的生物标志物。目前,使用功能性脑网络(FBN)对于提取脑成像生物标志物的数据被认为很重要。不幸的是,大多数现有研究报告的是利用连接信息来训练分类器;这种方法忽略了拓扑信息,进而限制了其性能。因此,有效利用FBN为提高诊断性能提供了思路。

方法

我们提出将来自FBN及其相应图论测量的信息相结合,以识别和区分ASD与正常对照(NC)。具体而言,使用多核支持向量机(MK-SVM)来组合多种类型的信息。

结果

实验结果表明,多种连接组特征(即功能连接和图测量)的信息组合能够提供卓越的识别性能,受试者工作特征曲线(ROC)下面积为0.9191,准确率为82.60%。此外,图论分析表明,显著的节点图测量和一致性连接主要存在于突显网络(SN)、默认模式网络(DMN)、注意力网络、额顶叶网络和社交网络中。

结论

这项工作为可能用于ASD诊断的潜在神经影像学生物标志物提供了见解,并为通过机器学习探索ASD的脑病理生理学提供了新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验