Michel Pierre, Baumstarck Karine, Loundou Anderson, Ghattas Badih, Auquier Pascal, Boyer Laurent
Aix-Marseille Univ, School of Medicine, CEReSS - Health Service Research and Quality of Life Center, Marseille, France.
Mathematics Institute of Marseille, Aix-Marseille University, Marseille, France.
Patient Prefer Adherence. 2018 Jun 19;12:1043-1053. doi: 10.2147/PPA.S162206. eCollection 2018.
The aim of this study was to propose an alternative approach to item response theory (IRT) in the development of computerized adaptive testing (CAT) in quality of life (QoL) for patients with multiple sclerosis (MS). This approach relied on decision regression trees (DRTs). A comparison with IRT was undertaken based on precision and validity properties.
DRT- and IRT-based CATs were applied on items from a unidi-mensional item bank measuring QoL related to mental health in MS. The DRT-based approach consisted of CAT simulations based on a minsplit parameter that defines the minimal size of nodes in a tree. The IRT-based approach consisted of CAT simulations based on a specified level of measurement precision. The best CAT simulation showed the lowest number of items and the best levels of precision. Validity of the CAT was examined using sociodemographic, clinical and QoL data.
CAT simulations were performed using the responses of 1,992 MS patients. The DRT-based CAT algorithm with minsplit = 10 was the most satisfactory model, superior to the best IRT-based CAT algorithm. This CAT administered an average of nine items and showed satisfactory precision indicators (R = 0.98, root mean square error [RMSE] = 0.18). The DRT-based CAT showed convergent validity as its score correlated significantly with other QoL scores and showed satisfactory discriminant validity.
We presented a new adaptive testing algorithm based on DRT, which has equivalent level of performance to IRT-based approach. The use of DRT is a natural and intuitive way to develop CAT, and this approach may be an alternative to IRT.
本研究的目的是在为多发性硬化症(MS)患者开发生活质量(QoL)的计算机自适应测试(CAT)时,提出一种替代项目反应理论(IRT)的方法。这种方法依赖于决策回归树(DRT)。基于精度和有效性属性对其与IRT进行了比较。
基于DRT和IRT的CAT应用于来自一个单维度题库的项目,该题库测量与MS患者心理健康相关的QoL。基于DRT的方法包括基于定义树中节点最小大小的最小分割参数进行CAT模拟。基于IRT的方法包括基于指定测量精度水平进行CAT模拟。最佳的CAT模拟显示出最少的项目数量和最佳的精度水平。使用社会人口统计学、临床和QoL数据检查CAT的有效性。
使用1992名MS患者的反应进行了CAT模拟。最小分割 = 10的基于DRT的CAT算法是最令人满意的模型,优于最佳的基于IRT的CAT算法。这种CAT平均给出九个项目,并显示出令人满意的精度指标(R = 0.98,均方根误差[RMSE] = 0.18)。基于DRT的CAT显示出收敛效度,因为其分数与其他QoL分数显著相关,并显示出令人满意的区分效度。
我们提出了一种基于DRT的新自适应测试算法,其性能水平与基于IRT的方法相当。使用DRT是开发CAT的一种自然且直观的方式,这种方法可能是IRT的一种替代方法。