Department of Radiation Oncology, Peking University Third Hospital, Beijing, China.
School of Pharmacy, Queen's University of Belfast, Belfast, UK.
Int J Nanomedicine. 2018 Jun 19;13:3541-3552. doi: 10.2147/IJN.S161157. eCollection 2018.
This study investigated the effectiveness and underpinning mechanisms of radiosensitization using octaarginine (R8)-modified gold nanoparticle-poly(ethylene glycol) (GNP-PEG-R8) in colorectal cancer cell line LS180 to megavoltage radiotherapy in vitro.
In-house synthesized GNP-PEG was characterized by transmission electron microscopy, dynamic light scattering, ultraviolet-visible spectrophotometry, and X-ray photoelectron spectroscopy. Inductively coupled plasma mass spectroscopy was used to quantify internalization. Direct cytotoxicity was established using the Cell Counting Kit-8, while radiosensitivity was determined using the gold standard in vitro clonogenic assay. Cell-cycle distribution, apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were analyzed by flow cytometry, further exploring the key mechanisms driving GNP-PEG-R8 radiosensitization.
The core GNP diameter was 6.3±1.1 nm (mean±SD). Following functionalization, the hydrodynamic diameter increased to 19.7±2.8 nm and 27.8±1.8 nm for GNP-PEG and GNP-PEG-R8, with respective surface plasmon resonance peaks of 515 nm and 525 nm. Furthermore, incorporation of the R8 significantly increased nanoparticle internalization compared to GNP-PEG (<0.001) over a 1 h treatment period. Functionalized GNPs confer little cytotoxicity below 400 nM. In clonogenic assays, radiation combined with GNP-PEG-R8 induced a significant reduction in colony formation compared with radiation alone, generating a sensitizer enhancement ratio of 1.59. Furthermore, GNP-PEG-R8 plus radiation predominantly induced cell-cycle arrest in the G2/M phase, increasing G2/M stalling by an additional 10% over GNP-PEG, markedly promoting apoptosis (<0.001). Finally, ROS levels and alterations in MMP were investigated, indicating a highly significant (<0.001) change in both parameters following the combined treatment of GNP-PEG-R8 and radiation over radiation alone.
R8-modified GNPs were efficiently internalized by LS180 cells, exhibiting minimal cytotoxicity. This yielded significant radiosensitization in response to megavoltage radiation. GNP-PEG-R8 may enhance radiosensitivity by arresting cell cycle and inducing apoptosis, with elevated ROS identified as the likely initiator.
本研究旨在探讨在体外应用八聚精氨酸(R8)修饰的金纳米粒子-聚乙二醇(GNP-PEG-R8)对大肠癌细胞系 LS180 进行放射增敏的效果及其潜在机制。
采用透射电子显微镜、动态光散射、紫外-可见分光光度法和 X 射线光电子能谱对自行合成的 GNP-PEG 进行表征。采用电感耦合等离子体质谱法(ICP-MS)定量分析细胞内吞作用。使用 Cell Counting Kit-8 测定直接细胞毒性,采用金标准体外集落形成实验测定放射敏感性。通过流式细胞术分析细胞周期分布、细胞凋亡、活性氧(ROS)和线粒体膜电位(MMP),进一步探讨驱动 GNP-PEG-R8 放射增敏的关键机制。
核心金纳米粒子的直径为 6.3±1.1nm(平均值±标准差)。功能化后,水动力直径分别增加至 19.7±2.8nm 和 27.8±1.8nm,相应的表面等离子体共振峰分别为 515nm 和 525nm。此外,与 GNP-PEG 相比,R8 的掺入在 1 小时的处理时间内显著增加了纳米颗粒的内吞作用(<0.001)。在低于 400nM 的浓度下,功能化的 GNPs 几乎没有细胞毒性。在集落形成实验中,与单纯放射治疗相比,GNP-PEG-R8 联合放射治疗显著降低了集落形成,产生了 1.59 的增敏比。此外,GNP-PEG-R8 联合放射治疗主要诱导细胞周期停滞在 G2/M 期,与 GNP-PEG 相比,G2/M 期的阻滞增加了 10%,显著促进了细胞凋亡(<0.001)。最后,研究了 ROS 水平和 MMP 的变化,表明在 GNP-PEG-R8 和放射治疗联合治疗后,这两个参数均发生了显著变化(<0.001)。
八聚精氨酸修饰的 GNPs 被 LS180 细胞有效内化,表现出最小的细胞毒性。这使得细胞对兆伏射线产生了显著的放射增敏作用。GNP-PEG-R8 可能通过阻滞细胞周期和诱导细胞凋亡来增强放射敏感性,ROS 的升高可能是其潜在的触发因素。