文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

线粒体 ROS 在癌症中的作用:启动子、放大器还是致命弱点?

Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?

机构信息

Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.

出版信息

Nat Rev Cancer. 2014 Nov;14(11):709-21. doi: 10.1038/nrc3803.


DOI:10.1038/nrc3803
PMID:25342630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4657553/
Abstract

Mitochondria cooperate with their host cells by contributing to bioenergetics, metabolism, biosynthesis, and cell death or survival functions. Reactive oxygen species (ROS) generated by mitochondria participate in stress signalling in normal cells but also contribute to the initiation of nuclear or mitochondrial DNA mutations that promote neoplastic transformation. In cancer cells, mitochondrial ROS amplify the tumorigenic phenotype and accelerate the accumulation of additional mutations that lead to metastatic behaviour. As mitochondria carry out important functions in normal cells, disabling their function is not a feasible therapy for cancer. However, ROS signalling contributes to proliferation and survival in many cancers, so the targeted disruption of mitochondria-to-cell redox communication represents a promising avenue for future therapy.

摘要

线粒体通过参与生物能量学、代谢、生物合成以及细胞死亡或存活功能来与宿主细胞合作。线粒体产生的活性氧 (ROS) 参与正常细胞的应激信号转导,但也有助于引发核或线粒体 DNA 突变,从而促进肿瘤转化。在癌细胞中,线粒体 ROS 放大了肿瘤表型,并加速了导致转移行为的其他突变的积累。由于线粒体在正常细胞中发挥着重要作用,因此使其功能丧失不是治疗癌症的可行方法。然而,ROS 信号转导在许多癌症中促进增殖和存活,因此靶向破坏线粒体到细胞的氧化还原通讯代表了未来治疗的一个有前途的途径。

相似文献

[1]
Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel?

Nat Rev Cancer. 2014-11

[2]
Estrogen potentiates reactive oxygen species (ROS) tolerance to initiate carcinogenesis and promote cancer malignant transformation.

Tumour Biol. 2016-1

[3]
The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy.

Mol Aspects Med. 2010-3-2

[4]
Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging.

Exp Biol Med (Maywood). 2013-5

[5]
ROS, autophagy, mitochondria and cancer: Ras, the hidden master?

Mitochondrion. 2012-6-29

[6]
Mitochondria and cancer.

Nat Rev Cancer. 2012-10

[7]
Mitochondrial DNA and carcinogenesis (review).

Mol Med Rep. 2012-8-9

[8]
Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies.

Redox Biol. 2017-12-26

[9]
Detection of mitochondria-generated reactive oxygen species in cells using multiple probes and methods: Potentials, pitfalls, and the future.

J Biol Chem. 2018-5-8

[10]
A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis.

Hum Mol Genet. 2009-5-1

引用本文的文献

[1]
Targeting mitochondrial proteases CLPP and LONP1 via disruption of mitochondrial redox homeostasis induces proteotoxic stress and suppresses tumor progression.

Cell Commun Signal. 2025-9-3

[2]
Self-assembled block copolymer domains as macromolecular ion transport systems in biological membranes.

Chem Sci. 2025-8-29

[3]
Cancer Cachexia.

Adv Exp Med Biol. 2025

[4]
Living on the Edge: ROS Homeostasis in Cancer Cells and Its Potential as a Therapeutic Target.

Antioxidants (Basel). 2025-8-16

[5]
Metal-organic frameworks activate the cGAS-STING pathway for cancer immunotherapy.

J Nanobiotechnology. 2025-8-21

[6]
Copper metabolism and cuproptosis: broad perspectives in the treatment of hepatocellular carcinoma.

Front Oncol. 2025-7-30

[7]
Reactive oxygen species in cancer: Mechanistic insights and therapeutic innovations.

Cell Stress Chaperones. 2025-8-5

[8]
Novel Compounds Featuring a Thiophene Carboxamide Scaffold: Synthesis, Characterization and Antiproliferative Evaluation.

Int J Mol Sci. 2025-7-16

[9]
Revealing the Improving Effect and Molecular Mechanism of -Clausenamide in Combating the Acute Lung Injury: Insights from Network Pharmacology, Molecular Docking, and In Vitro Validation.

Biology (Basel). 2025-7-9

[10]
Ferroptosis: a double-edged sword that enhances radiation sensitivity and facilitates radiation-induced injury in tumors.

Front Immunol. 2025-7-10

本文引用的文献

[1]
Tumorigenicity of hypoxic respiring cancer cells revealed by a hypoxia-cell cycle dual reporter.

Proc Natl Acad Sci U S A. 2014-8-26

[2]
Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells.

Mol Cell. 2014-5-29

[3]
Quantitative flux analysis reveals folate-dependent NADPH production.

Nature. 2014-5-4

[4]
The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I.

J Biol Chem. 2014-2-10

[5]
Peroxiredoxin-5 targeted to the mitochondrial intermembrane space attenuates hypoxia-induced reactive oxygen species signalling.

Biochem J. 2013-12-15

[6]
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations.

J Clin Invest. 2013-9-3

[7]
The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling.

Mol Cell. 2013-6-6

[8]
The maintenance of mitochondrial DNA integrity--critical analysis and update.

Cold Spring Harb Perspect Biol. 2013-5-1

[9]
ROS-mediated PARP activity undermines mitochondrial function after permeability transition pore opening during myocardial ischemia-reperfusion.

J Am Heart Assoc. 2013-4-18

[10]
Dimers of mitochondrial ATP synthase form the permeability transition pore.

Proc Natl Acad Sci U S A. 2013-3-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索