Huang Fuqiang, Ching ShiNung
The Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, 63130, USA.
Biol Cybern. 2019 Apr;113(1-2):179-190. doi: 10.1007/s00422-018-0769-7. Epub 2018 Jun 27.
In the brain, networks of neurons produce activity that is decoded into perceptions and actions. How the dynamics of neural networks support this decoding is a major scientific question. That is, while we understand the basic mechanisms by which neurons produce activity in the form of spikes, whether these dynamics reflect an overlying functional objective is not understood. In this paper, we examine neuronal dynamics from a first-principles control-theoretic viewpoint. Specifically, we postulate an objective wherein neuronal spiking activity is decoded into a control signal that subsequently drives a linear system. Then, using a recently proposed principle from theoretical neuroscience, we optimize the production of spikes so that the linear system in question achieves reference tracking. It turns out that such optimization leads to a recurrent network architecture wherein each neuron possess integrative dynamics. The network amounts to an efficient, distributed event-based controller where each neuron (node) produces a spike if doing so improves tracking performance. Moreover, the dynamics provide inherent robustness properties, so that if some neurons fail, others will compensate by increasing their activity so that the tracking objective is met.
在大脑中,神经元网络产生的活动会被解码为感知和行动。神经网络的动力学如何支持这种解码是一个重大的科学问题。也就是说,虽然我们了解神经元以尖峰形式产生活动的基本机制,但这些动力学是否反映了一个潜在的功能目标尚不清楚。在本文中,我们从第一原理控制理论的角度研究神经元动力学。具体而言,我们假设一个目标,即神经元的尖峰活动被解码为一个控制信号,该信号随后驱动一个线性系统。然后,利用理论神经科学最近提出的一个原理,我们优化尖峰的产生,以便所讨论的线性系统实现参考跟踪。结果表明,这种优化会导致一种循环网络架构,其中每个神经元都具有整合动力学。该网络相当于一个高效的、基于分布式事件的控制器,其中每个神经元(节点)在这样做能提高跟踪性能时就会产生一个尖峰。此外,这些动力学提供了固有的鲁棒性特性,因此如果一些神经元发生故障,其他神经元会通过增加活动来进行补偿,从而实现跟踪目标。