Suppr超能文献

高阶渐近及其在检验两组项目中考生能力相等性上的应用。

Higher-Order Asymptotics and Its Application to Testing the Equality of the Examinee Ability Over Two Sets of Items.

机构信息

Educational Testing Service, Princeton, USA.

Aarhus University, Aarhus, Denmark.

出版信息

Psychometrika. 2019 Jun;84(2):484-510. doi: 10.1007/s11336-018-9627-8. Epub 2018 Jun 27.

Abstract

In educational and psychological measurement, researchers and/or practitioners are often interested in examining whether the ability of an examinee is the same over two sets of items. Such problems can arise in measurement of change, detection of cheating on unproctored tests, erasure analysis, detection of item preknowledge, etc. Traditional frequentist approaches that are used in such problems include the Wald test, the likelihood ratio test, and the score test (e.g., Fischer, Appl Psychol Meas 27:3-26, 2003; Finkelman, Weiss, & Kim-Kang, Appl Psychol Meas 34:238-254, 2010; Glas & Dagohoy, Psychometrika 72:159-180, 2007; Guo & Drasgow, Int J Sel Assess 18:351-364, 2010; Klauer & Rettig, Br J Math Stat Psychol 43:193-206, 1990; Sinharay, J Educ Behav Stat 42:46-68, 2017). This paper shows that approaches based on higher-order asymptotics (e.g., Barndorff-Nielsen & Cox, Inference and asymptotics. Springer, London, 1994; Ghosh, Higher order asymptotics. Institute of Mathematical Statistics, Hayward, 1994) can also be used to test for the equality of the examinee ability over two sets of items. The modified signed likelihood ratio test (e.g., Barndorff-Nielsen, Biometrika 73:307-322, 1986) and the Lugannani-Rice approximation (Lugannani & Rice, Adv Appl Prob 12:475-490, 1980), both of which are based on higher-order asymptotics, are shown to provide some improvement over the traditional frequentist approaches in three simulations. Two real data examples are also provided.

摘要

在教育和心理测量中,研究人员和/或从业者通常有兴趣检查考生在两套项目上的能力是否相同。这种问题可能出现在测量变化、检测无人监考测试中的作弊、擦除分析、检测项目先验知识等方面。在这种问题中使用的传统频率派方法包括 Wald 检验、似然比检验和得分检验(例如,Fischer, Appl Psychol Meas 27:3-26,2003;Finkelman,Weiss 和 Kim-Kang, Appl Psychol Meas 34:238-254,2010;Glas 和 Dagohoy, Psychometrika 72:159-180,2007;Guo 和 Drasgow, Int J Sel Assess 18:351-364,2010;Klauer 和 Rettig, Br J Math Stat Psychol 43:193-206,1990;Sinharay,J Educ Behav Stat 42:46-68,2017)。本文表明,基于高阶渐近的方法(例如,Barndorff-Nielsen 和 Cox,Inference and asymptotics. Springer,London,1994;Ghosh,Higher order asymptotics. Institute of Mathematical Statistics,Hayward,1994)也可用于检验考生在两套项目上的能力是否相等。基于高阶渐近的修改后的符号似然比检验(例如,Barndorff-Nielsen,Biometrika 73:307-322,1986)和 Lugannani-Rice 逼近(Lugannani 和 Rice,Adv Appl Prob 12:475-490,1980)在三个模拟中均被证明优于传统的频率派方法。还提供了两个真实数据示例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验