Suppr超能文献

通过监测抑郁个体症状的早期改善来预测抗抑郁反应:个体患者数据荟萃分析。

Predicting antidepressant response by monitoring early improvement of individual symptoms of depression: individual patient data meta-analysis.

机构信息

Interdisciplinary Center Psychopathology and Emotion Regulation,Department of Psychiatry,University Medical Center Groningen,University of Groningen,the Netherlands;Division of Developmental Psychology,Department of Psychology,University of Groningen,the Netherlands.

Interdisciplinary Center Psychopathology and Emotion Regulation,Department of Psychiatry,University Medical Center Groningen,University of Groningen,the Netherlands;Division of Developmental Psychology, Department of Psychology, University of Groningen,the Netherlands.

出版信息

Br J Psychiatry. 2019 Jan;214(1):4-10. doi: 10.1192/bjp.2018.122. Epub 2018 Jun 28.

Abstract

BACKGROUND

Improvement in depression within the first 2 weeks of antidepressant treatment predicts good outcomes, but non-improvers can still respond or remit, whereas improvers often do not.AimsWe aimed to investigate whether early improvement of individual depressive symptoms better predicts response or remission.

METHOD

We obtained individual patient data of 30 trials comprising 2184 placebo-treated and 6058 antidepressant-treated participants. Primary outcome was week 6 response; secondary outcomes were week 6 remission and week 12 response and remission. We compared models that only included improvement in total score by week 2 (total improvement model) with models that also included improvement in individual symptoms.

RESULTS

For week 6 response, the area under the receiver operating characteristic curve and negative and positive predictive values of the total improvement model were 0.73, 0.67 and 0.74 compared with 0.77, 0.70 and 0.71 for the item improvement model. Model performance decreased for week 12 outcomes. Of predicted non-responders, 29% actually did respond by week 6 and 43% by week 12, which was decreased from the baseline (overall) probabilities of 51% by week 6 and 69% by week 12. In post hoc analyses with continuous rather than dichotomous early improvement, including individual items did not enhance model performance.

CONCLUSIONS

Examining individual symptoms adds little to the predictive ability of early improvement. Additionally, early non-improvement does not rule out response or remission, particularly after 12 rather than 6 weeks. Therefore, our findings suggest that routinely adapting pharmacological treatment because of limited early improvement would often be premature.Declaration of interestNone.

摘要

背景

抗抑郁治疗的前 2 周内抑郁的改善可预测良好的结果,但非改善者仍可能反应或缓解,而改善者通常不会。

目的

我们旨在研究个体抑郁症状的早期改善是否能更好地预测反应或缓解。

方法

我们获得了 30 项试验的个体患者数据,其中包括 2184 名安慰剂治疗和 6058 名抗抑郁治疗的参与者。主要结局为第 6 周的反应;次要结局为第 6 周的缓解和第 12 周的反应和缓解。我们比较了仅包括第 2 周总分改善的模型(总改善模型)与也包括个体症状改善的模型。

结果

对于第 6 周的反应,总改善模型的受试者工作特征曲线下面积和阴性和阳性预测值分别为 0.73、0.67 和 0.74,而项目改善模型分别为 0.77、0.70 和 0.71。第 12 周的结局模型性能下降。在预测的非反应者中,有 29%的患者在第 6 周实际上有反应,43%的患者在第 12 周有反应,这比第 6 周和第 12 周的基线(总体)概率分别减少了 51%和 69%。在使用连续而非二分法的早期改善的事后分析中,包括个体项目并不能提高模型性能。

结论

检查个体症状对早期改善的预测能力几乎没有增加。此外,早期无改善并不能排除反应或缓解,特别是在 12 周而不是 6 周后。因此,我们的研究结果表明,由于早期改善有限而常规调整药物治疗通常是过早的。

利益声明

无。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验