Suppr超能文献

一种用于预测具有生物活性化合物的 HIV 逆转录酶突变易感性的机器学习方法。

A Machine Learning Approach for Predicting HIV Reverse Transcriptase Mutation Susceptibility of Biologically Active Compounds.

机构信息

Department of Chemistry , Emory University , 201 Dowman Drive , Atlanta , Georgia 30322 , United States.

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy , Medical University of South Carolina , 280 Calhoun St., MSC 141 , Charleston , South Carolina 29425-1410 , United States.

出版信息

J Chem Inf Model. 2018 Aug 27;58(8):1544-1552. doi: 10.1021/acs.jcim.7b00475. Epub 2018 Jul 17.

Abstract

HIV resistance emerging against antiretroviral drugs represents a great threat to the continued prolongation of the lifespans of HIV-infected patients. Therefore, methods capable of predicting resistance susceptibility in the development of compounds are in great need. By targeting the major reverse transcription residues Y181, K103, and L100, we used the biological activities of compounds against these enzymes and the wild-type reverse transcriptase to create Naïve Bayes Networks. Through this machine learning approach, we could predict, with high accuracy, whether a compound would be susceptible to a loss of potency due to resistance. Also, we could perfectly predict retrospectively whether compounds would be susceptible to both a K103 mutant RT and a Y181 mutant RT. In the study presented here, our method outperformed a traditional molecular mechanics approach. This method should be of broad interest beyond drug discovery efforts, and serves to expand the utility of machine learning for the prediction of physical, chemical, or biological properties using the vast information available in the literature.

摘要

HIV 对抗病毒药物的耐药性的出现,对延长 HIV 感染患者的寿命构成了巨大威胁。因此,需要能够预测化合物耐药性的方法。通过针对主要的逆转录酶残基 Y181、K103 和 L100,我们利用这些酶和野生型逆转录酶对化合物的生物活性,创建了朴素贝叶斯网络。通过这种机器学习方法,我们可以准确地预测化合物是否会因耐药性而失去效力。此外,我们还可以完美地回溯性预测化合物是否对 K103 突变型 RT 和 Y181 突变型 RT 都敏感。在本研究中,我们的方法优于传统的分子力学方法。该方法应该在药物发现工作之外具有广泛的兴趣,并且可以扩展机器学习在利用文献中大量信息预测物理、化学或生物学性质方面的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验