Suppr超能文献

基于人工智能的应用以探索神经退行性疾病的抑制剂

Artificial Intelligence-Based Application to Explore Inhibitors of Neurodegenerative Diseases.

作者信息

Deng Leping, Zhong Weihe, Zhao Lu, He Xuedong, Lian Zongkai, Jiang Shancheng, Chen Calvin Yu-Chian

机构信息

Artificial Intelligence Medical Center, School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, China.

Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Neurorobot. 2020 Dec 22;14:617327. doi: 10.3389/fnbot.2020.617327. eCollection 2020.

Abstract

Neuroinflammation is a common factor in neurodegenerative diseases, and it has been demonstrated that galectin-3 activates microglia and astrocytes, leading to inflammation. This means that inhibition of galectin-3 may become a new strategy for the treatment of neurodegenerative diseases. Based on this motivation, the objective of this study is to explore an integrated new approach for finding lead compounds that inhibit galectin-3, by combining universal artificial intelligence algorithms with traditional drug screening methods. Based on molecular docking method, potential compounds with high binding affinity were screened out from Chinese medicine database. Manifold artificial intelligence algorithms were performed to validate the docking results and further screen compounds. Among all involved predictive methods, the deep learning-based algorithm made 500 modeling attempts, and the square correlation coefficient of the best trained model on the test sets was 0.9. The XGBoost model reached a square correlation coefficient of 0.97 and a mean square error of only 0.01. We switched to the ZINC database and performed the same experiment, the results showed that the compounds in the former database showed stronger affinity. Finally, we further verified through molecular dynamics simulation that the complex composed of the candidate ligand and the target protein showed stable binding within 100 ns of simulation time. In summary, combined with the application based on artificial intelligence algorithms, we unearthed the active ingredients 1,2-Dimethylbenzene and Typhic acid contained in and might be the effective inhibitors of neurodegenerative diseases. The high prediction accuracy of the models shows that it has practical application value on small sample data sets such as drug screening.

摘要

神经炎症是神经退行性疾病的一个共同因素,并且已经证明半乳糖凝集素-3可激活小胶质细胞和星形胶质细胞,从而导致炎症。这意味着抑制半乳糖凝集素-3可能成为治疗神经退行性疾病的一种新策略。基于这一动机,本研究的目的是通过将通用人工智能算法与传统药物筛选方法相结合,探索一种寻找抑制半乳糖凝集素-3的先导化合物的综合新方法。基于分子对接方法,从中药数据库中筛选出具有高结合亲和力的潜在化合物。运用多种人工智能算法验证对接结果并进一步筛选化合物。在所有涉及的预测方法中,基于深度学习的算法进行了500次建模尝试,测试集上最佳训练模型的平方相关系数为0.9。XGBoost模型的平方相关系数达到0.97,均方误差仅为0.01。我们转而使用ZINC数据库并进行相同实验,结果表明前一个数据库中的化合物显示出更强的亲和力。最后,我们通过分子动力学模拟进一步验证,候选配体与靶蛋白组成的复合物在100纳秒的模拟时间内显示出稳定的结合。综上所述,结合基于人工智能算法的应用,我们发掘出 和 中含有的活性成分1,2-二甲基苯和伤寒酸可能是神经退行性疾病的有效抑制剂。模型的高预测准确性表明其在药物筛选等小样本数据集上具有实际应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cd0/7783404/605fe2dd5973/fnbot-14-617327-g0014.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验