Suppr超能文献

宏基因组组装中11种从头组装程序的实际评估

Practical evaluation of 11 de novo assemblers in metagenome assembly.

作者信息

Forouzan Esmaeil, Shariati Parvin, Mousavi Maleki Masoumeh Sadat, Karkhane Ali Asghar, Yakhchali Bagher

机构信息

Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.

Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.

出版信息

J Microbiol Methods. 2018 Aug;151:99-105. doi: 10.1016/j.mimet.2018.06.007. Epub 2018 Jun 25.

Abstract

Next Generation Sequencing (NGS) technologies are revolutionizing the field of biology and metagenomic-based research. Since the volume of metagenomic data is typically very large, De novo metagenomic assembly can be effectively used to reduce the total amount of data and enhance quality of downstream analysis, such as annotation and binning. Although, there are many freely available assemblers, but selecting one suitable for a specific goal can be highly challenging. In this study, the performance of 11 well-known assemblers was evaluated in the assembly of three different metagenomes. The results obtained show that metaSPAdes is the best assembler and Megahit is a good choice for conservative assembly strategy. In addition, this research provides useful information regarding the pros and cons of each assembler and the effect of read length on assembly, thereby helping scholars to select the optimal assembler based on their objectives.

摘要

新一代测序(NGS)技术正在彻底改变生物学和基于宏基因组学的研究领域。由于宏基因组数据量通常非常大,从头宏基因组组装可有效用于减少数据总量并提高下游分析(如注释和分箱)的质量。尽管有许多免费可用的组装器,但选择一个适合特定目标的组装器可能极具挑战性。在本研究中,评估了11种知名组装器在三种不同宏基因组组装中的性能。所得结果表明,metaSPAdes是最佳组装器,而Megahit是保守组装策略的不错选择。此外,本研究提供了有关每个组装器优缺点以及读长对组装影响的有用信息,从而帮助学者根据其目标选择最佳组装器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验