Department of Pharmacology, School of Medicine, University of California - San Diego, La Jolla, CA 92093, United States.
Department of Pharmacology, School of Medicine, University of California - San Diego, La Jolla, CA 92093, United States.
Cell Signal. 2018 Oct;50:48-57. doi: 10.1016/j.cellsig.2018.06.012. Epub 2018 Jun 25.
Cardiac ischemia/reperfusion, loss of blood flow and its subsequent restoration, causes damage to the heart. Oxidative stress from ischemia/reperfusion leads to dysfunction and death of cardiomyocytes, increasing the risk of progression to heart failure. Alterations in mitochondrial dynamics, in particular mitochondrial fission, have been suggested to play a role in cardioprotection from oxidative stress. We tested the hypothesis that activation of RhoA regulates mitochondrial fission in cardiomyocytes. Our studies show that expression of constitutively active RhoA in cardiomyocytes increases phosphorylation of Dynamin-related protein 1 (Drp1) at serine-616, and leads to localization of Drp1 at mitochondria. Both responses are blocked by inhibition of Rho-associated Protein Kinase (ROCK). Endogenous RhoA activation by the GPCR agonist sphingosine-1-phosphate (S1P) also increases Drp1 phosphorylation and its mitochondrial translocation in a RhoA and ROCK dependent manner. Consistent with the role of mitochondrial Drp1 in fission, RhoA activation in cardiomyocytes leads to formation of smaller mitochondria and this is attenuated by inhibition of ROCK, by siRNA knockdown of Drp1 or by expression of a phosphorylation-deficient Drp1 S616A mutant. In addition, activation of RhoA prevents cell death in cardiomyocytes challenged by oxidative stress and this protection is blocked by siRNA knockdown of Drp1 or by Drp1 S616A expression. Taken together our findings demonstrate that RhoA activation can regulate Drp1 to induce mitochondrial fission and subsequent cellular protection, implicating regulation of fission as a novel mechanism contributing to RhoA-mediated cardioprotection.
心肌缺血/再灌注,即血流的丧失及其随后的恢复,会导致心脏损伤。缺血/再灌注引起的氧化应激导致心肌细胞功能障碍和死亡,增加了进展为心力衰竭的风险。线粒体动力学的改变,特别是线粒体裂变,被认为在氧化应激引起的心脏保护中发挥作用。我们检验了这样一个假设,即 RhoA 的激活调节心肌细胞中线粒体的裂变。我们的研究表明,心肌细胞中组成型激活的 RhoA 的表达增加了 Dynamin-related protein 1(Drp1)丝氨酸 616 位的磷酸化,并导致 Drp1 定位于线粒体。这两种反应都被 Rho 相关蛋白激酶(ROCK)的抑制所阻断。G 蛋白偶联受体激动剂鞘氨醇-1-磷酸(S1P)引起的内源性 RhoA 激活也以 RhoA 和 ROCK 依赖的方式增加 Drp1 的磷酸化及其向线粒体的易位。与线粒体 Drp1 在裂变中的作用一致,心肌细胞中 RhoA 的激活导致较小的线粒体形成,而 ROCK 的抑制、Drp1 的 siRNA 敲低或磷酸化缺陷型 Drp1 S616A 突变体的表达都可以减弱这种作用。此外,RhoA 的激活可防止氧化应激挑战的心肌细胞死亡,而 Drp1 的 siRNA 敲低或 Drp1 S616A 的表达则阻断了这种保护作用。综上所述,我们的研究结果表明,RhoA 的激活可以调节 Drp1 诱导线粒体裂变和随后的细胞保护,表明裂变法作为一种新的机制参与了 RhoA 介导的心脏保护。