Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 Munich, Theresienstrasse 37, Germany.
Lehrstuhl für Biophysik (E27), Technische Universität München, James-Franck-Strasse 1, D-85748 Garching, Germany.
Science. 2018 Jul 20;361(6399):255-258. doi: 10.1126/science.aao5434. Epub 2018 Jun 28.
Active systems can produce a far greater variety of ordered patterns than conventional equilibrium systems. In particular, transitions between disorder and either polar- or nematically ordered phases have been predicted and observed in two-dimensional active systems. However, coexistence between phases of different types of order has not been reported. We demonstrate the emergence of dynamic coexistence of ordered states with fluctuating nematic and polar symmetry in an actomyosin motility assay. Combining experiments with agent-based simulations, we identify sufficiently weak interactions that lack a clear alignment symmetry as a prerequisite for coexistence. Thus, the symmetry of macroscopic order becomes an emergent and dynamic property of the active system. These results provide a pathway by which living systems can express different types of order by using identical building blocks.
主动系统可以产生比传统平衡系统更多种类的有序模式。特别是,在二维主动系统中已经预测并观察到无序与极或向列有序相之间的转变。然而,不同类型有序相之间的共存尚未报道。我们在肌动球蛋白运动测定中证明了具有波动向列和极对称的有序态动态共存的出现。通过将实验与基于主体的模拟相结合,我们确定了缺乏明确排列对称性的足够弱相互作用作为共存的前提条件。因此,宏观有序的对称性成为主动系统的一个涌现和动态特性。这些结果提供了一种途径,使生命系统可以通过使用相同的构建块来表达不同类型的秩序。