Sage Rowan F, Monson Russell K, Ehleringer James R, Adachi Shunsuke, Pearcy Robert W
Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, M5S3B2, Canada.
Department of Ecology and Evolutionary Biology and Laboratory of Tree Ring Research, University of Arizona, 1215 E. Lowell St, Tucson, AZ, 85721, USA.
Oecologia. 2018 Aug;187(4):941-966. doi: 10.1007/s00442-018-4191-6. Epub 2018 Jun 28.
The evolution of C photosynthesis requires an intermediate phase where photorespiratory glycine produced in the mesophyll cells must flow to the vascular sheath cells for metabolism by glycine decarboxylase. This glycine flux concentrates photorespired CO within the sheath cells, allowing it to be efficiently refixed by sheath Rubisco. A modest C biochemical cycle is then upregulated, possibly to support the refixation of photorespired ammonia in sheath cells, with subsequent increases in C metabolism providing incremental benefits until an optimized C pathway is established. 'Why' C photosynthesis evolved is largely explained by ancestral C species exploiting photorespiratory CO to improve carbon gain and thus enhance fitness. While photorespiration depresses C performance, it produces a resource (photorespired CO) that can be exploited to build an evolutionary bridge to C photosynthesis. 'Where' C evolved is indicated by the habitat of species branching near C-to-C transitions on phylogenetic trees. Consistent with the photorespiratory bridge hypothesis, transitional species show that the large majority of > 60 C lineages arose in hot, dry, and/or saline regions where photorespiratory potential is high. 'When' C evolved has been clarified by molecular clock analyses using phylogenetic data, coupled with isotopic signatures from fossils. Nearly all C lineages arose after 25 Ma when atmospheric CO levels had fallen to near current values. This reduction in CO, coupled with persistent high temperature at low-to-mid-latitudes, met a precondition where photorespiration was elevated, thus facilitating the evolutionary selection pressure that led to C photosynthesis.
C4光合作用的进化需要一个中间阶段,在此阶段,叶肉细胞中产生的光呼吸甘氨酸必须流向维管束鞘细胞,由甘氨酸脱羧酶进行代谢。这种甘氨酸通量将光呼吸产生的CO2集中在鞘细胞内,使其能够被鞘细胞中的核酮糖-1,5-二磷酸羧化酶(Rubisco)有效地重新固定。然后适度上调一个小型的C4生化循环,可能是为了支持鞘细胞中光呼吸产生的氨的重新固定,随后C4代谢的增加带来了额外的益处,直到建立起优化的C4途径。C4光合作用进化的“原因”很大程度上可以解释为,原始的C3物种利用光呼吸产生的CO2来提高碳固定,从而增强适应性。虽然光呼吸会降低C3植物的性能,但它产生了一种资源(光呼吸产生的CO2),可以被利用来构建通向C4光合作用的进化桥梁。C4植物进化的“地点”可以通过系统发育树上C3-C4过渡附近分支物种的栖息地来表明。与光呼吸桥梁假说一致,过渡物种表明,超过60个C4谱系中的绝大多数出现在光呼吸潜力较高的炎热、干燥和/或盐碱地区。利用系统发育数据进行的分子钟分析,结合化石的同位素特征,已经阐明了C4植物进化的“时间”。几乎所有的C4谱系都是在2500万年前大气CO2水平降至接近当前值之后出现的。CO2的这种减少,加上低中纬度地区持续的高温,满足了光呼吸升高的前提条件,从而促进了导致C4光合作用的进化选择压力。