Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02421, United States of America.
Nanotechnology. 2018 Sep 21;29(38):385206. doi: 10.1088/1361-6528/aad00e. Epub 2018 Jun 29.
Achieving enhanced coupling of solar radiation over the full range of the silicon absorption spectrum up to the bandgap is essential for increased efficiency of solar cells, especially thin film versions. While many designs for enhancing trapping of radiation have been explored, detailed measurements of light scattering inside silicon cells is still lacking. Here, we demonstrate experimentally and computationally that plasmonic-assisted localized and traveling modes can efficiently couple red and infrared radiation into ultrathin amorphous silicon (a-Si) layers. Utilizing patterned periodic arrays of aluminum nanostructures on thin a-Si, we perform specular and diffuse reflectivity and transmission measurements over a broad spectrum. Based on these results, we are able to separate parasitic absorption in aluminum plasmonic arrays from enhanced light absorption in the 200 nm thick amorphous silicon layer, as compared to a blank silicon layer. We discover a very efficient near-infrared a-Si absorption mechanism that occurs at the transition from the radiative to evanescent diffractive coupling, analogous to earlier surface-enhanced infrared studies. These results represent a direct demonstration of enhanced radiation coupling into silicon due to large angle scattering and show a path forward to improved ultrathin solar cell efficiency.
实现对太阳辐射的全光谱(包括硅的带隙)的高效耦合对于提高太阳能电池的效率至关重要,特别是对于薄膜太阳能电池。虽然已经探索了许多增强光捕获的设计方案,但硅电池内部光散射的详细测量仍然缺乏。在这里,我们通过实验和计算证明,等离子体辅助的局域和传输模式可以有效地将红光和红外光耦合到超薄非晶硅(a-Si)层中。我们利用薄的非晶硅上的周期性铝纳米结构图案化阵列,在宽光谱范围内进行镜面反射和漫反射率以及透射率测量。基于这些结果,我们能够将铝等离子体阵列中的寄生吸收与 200nm 厚非晶硅层中的增强光吸收区分开来,与空白硅层相比。我们发现了一种非常有效的近红外非晶硅吸收机制,它发生在辐射到消逝场衍射耦合的转变过程中,类似于早期的表面增强红外研究。这些结果直接证明了由于大角度散射导致的硅中辐射耦合的增强,并为提高超薄太阳能电池的效率提供了一条途径。