Suppr超能文献

基于深度学习技术的电火花线切割加工意外事件预测

Unexpected Event Prediction in Wire Electrical Discharge Machining Using Deep Learning Techniques.

作者信息

Sanchez Jose A, Conde Aintzane, Arriandiaga Ander, Wang Jun, Plaza Soraya

机构信息

Aeronautics Advanced Manufacturing Center, CFAA (UPV/EHU), Bizkaia Technology Park, Building 202, 48170 Zamudio, Spain.

Machine-Tool Institute (IMH), Azkue Auzoa 1 48, 20870 Elgoibar, Spain.

出版信息

Materials (Basel). 2018 Jun 28;11(7):1100. doi: 10.3390/ma11071100.

Abstract

Theoretical models of manufacturing processes provide a valuable insight into physical phenomena but their application to practical industrial situations is sometimes difficult. In the context of Industry 4.0, artificial intelligence techniques can provide efficient solutions to actual manufacturing problems when big data are available. Within the field of artificial intelligence, the use of deep learning is growing exponentially in solving many problems related to information and communication technologies (ICTs) but it still remains scarce or even rare in the field of manufacturing. In this work, deep learning is used to efficiently predict unexpected events in wire electrical discharge machining (WEDM), an advanced machining process largely used for aerospace components. The occurrence of an unexpected event, namely the change of thickness of the machined part, can be effectively predicted by recognizing hidden patterns from process signals. Based on WEDM experiments, different deep learning architectures were tested. By using a combination of a convolutional layer with gated recurrent units, thickness variation in the machined component could be predicted in 97.4% of cases, at least 2 mm in advance, which is extremely fast, acting before the process has degraded. New possibilities of deep learning for high-performance machine tools must be examined in the near future.

摘要

制造过程的理论模型为物理现象提供了有价值的见解,但将其应用于实际工业场景有时会很困难。在工业4.0的背景下,当有大数据可用时,人工智能技术可以为实际制造问题提供有效的解决方案。在人工智能领域,深度学习在解决许多与信息通信技术(ICT)相关的问题方面的应用正在呈指数级增长,但在制造领域仍然很少见甚至罕见。在这项工作中,深度学习被用于有效预测电火花线切割加工(WEDM)中的意外事件,电火花线切割加工是一种广泛用于航空航天部件的先进加工工艺。通过从过程信号中识别隐藏模式,可以有效预测意外事件的发生,即加工零件厚度的变化。基于电火花线切割加工实验,测试了不同的深度学习架构。通过将卷积层与门控循环单元相结合,在97.4%的情况下,可以提前至少2毫米预测加工部件的厚度变化,这非常快,在加工过程恶化之前就能发挥作用。在不久的将来,必须研究深度学习在高性能机床方面的新可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18a9/6073871/6dcb89145c21/materials-11-01100-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验