Department of Cardiology, University Hospital of Nancy-Brabois, Vandoeuvre-les-Nancy, France.
Department of Pulmonology, University Hospital of Nancy-Brabois, Vandoeuvre-les-Nancy, France.
J Am Soc Echocardiogr. 2018 Aug;31(8):905-915. doi: 10.1016/j.echo.2018.04.013. Epub 2018 Jun 27.
The analysis of right ventriculo-arterial coupling (RVAC) from pressure-volume loops is not routinely performed. RVAC may be approached by the combination of right heart catheterization (RHC) pressure data and cardiac magnetic resonance (CMR)-derived right ventricular (RV) volumetric data. RV pressure and volume measurements by Doppler and three-dimensional echocardiography (3DE) allows another way to approach RVAC.
Ninety patients suspected of having pulmonary hypertension underwent RHC, 3DE, and CMR (RHC mean pulmonary artery pressure [mPAP] 37.9 ± 11.3 mm Hg; range, 15-66 mm Hg). Three-dimensional (3D) echocardiography was performed in 30 normal patients (echocardiographic mPAP 18.4 ± 3.1 mm Hg). Pulmonary artery (PA) effective elastance (Ea), RV maximal end-systolic elastance (Emax), and RVAC (PA Ea/RV Emax) were calculated from RHC combined with CMR and from 3DE using simplified formulas including mPAP, stroke volume, and end-systolic volume.
Three-dimensional echocardiographic and RHC-CMR measures for PA Ea (3DE, 1.27 ± 0.94; RHC-CMR, 0.71 ± 0.52; r = 0.806, P < .001), RV Emax (3DE, 0.72 ± 0.37; RHC-CMR, 0.38 ± 0.19; r = 0.798, P < .001), and RVAC (3DE, 2.01 ± 1.28; RHC-CMR, 2.32 ± 1.77; r = 0.826, P < .001) were well correlated despite a systematic overestimation of 3DE elastance parameters. Among the whole population, 3D echocardiographic PA Ea and 3D echocardiographic RVAC but not 3D echocardiographic RV Emax were significantly lower in patients with mPAP < 25 mm Hg (n = 41) than in others (n = 79). Among the 90 patients who underwent RHC, 3D echocardiographic PA Ea and 3D echocardiographic RVAC but not 3D echocardiographic RV Emax increased significantly with increasing levels of pulmonary vascular resistance.
Three-dimensional echocardiography-derived PA Ea, RV Emax, and RVAC correlated well with the reference RHC-CMR measurements. Ea and RVAC but not Emax were significantly different between patients with different levels of afterload, suggesting failure of the right ventricle to maintain coupling in severe pulmonary hypertension.
从压力-容积环分析右心室-动脉偶联(RVAC)并未常规进行。RVAC 可通过右心导管检查(RHC)压力数据与心脏磁共振(CMR)得出的右心室(RV)容积数据相结合来评估。通过多普勒和三维超声心动图(3DE)测量 RV 压力和容积可提供另一种评估 RVAC 的方法。
90 例疑似患有肺动脉高压的患者接受了 RHC、3DE 和 CMR(RHC 平均肺动脉压[ mPAP ]为 37.9±11.3mmHg;范围为 15-66mmHg)。30 例正常患者接受了 3D 超声心动图检查(超声心动图 mPAP 为 18.4±3.1mmHg)。从 RHC 结合 CMR 和简化公式(包括 mPAP、每搏量和收缩末期容积),使用 3DE 计算肺动脉(PA)有效弹性(Ea)、RV 最大收缩末期弹性(Emax)和 RVAC(PA Ea/RV Emax)。
尽管 3DE 弹性参数存在系统高估,但 3DE 和 RHC-CMR 测量的 PA Ea(3DE,1.27±0.94;RHC-CMR,0.71±0.52;r=0.806,P<0.001)、RV Emax(3DE,0.72±0.37;RHC-CMR,0.38±0.19;r=0.798,P<0.001)和 RVAC(3DE,2.01±1.28;RHC-CMR,2.32±1.77;r=0.826,P<0.001)相关性良好。在整个人群中,与 mPAP<25mmHg 的患者(n=41)相比,mPAP≥25mmHg 的患者(n=79)的 3DE 超声心动图 PA Ea 和 3DE 超声心动图 RVAC 明显降低,但 3DE 超声心动图 RV Emax 无明显差异。在接受 RHC 的 90 例患者中,随着肺血管阻力水平的升高,3DE 超声心动图 PA Ea 和 3DE 超声心动图 RVAC 显著增加,但 3DE 超声心动图 RV Emax 无明显变化。
3DE 超声心动图衍生的 PA Ea、RV Emax 和 RVAC 与参考 RHC-CMR 测量值具有良好的相关性。Ea 和 RVAC(但不是 Emax)在不同后负荷水平的患者之间有明显差异,这表明在严重肺动脉高压时右心室维持耦联的能力下降。